资源描述
17.1.2反比例函数的图象和性质(2)
教学目标
知识与技能
1.使学生进一步理解和掌握反比例函数及其图象与性质
2.能灵活运用函数图象和性质解决一些较综合的问题
3.深刻领会函数解析式与函数图象之间的联系,体会数形结合及转化的思想方法
过程与方法
经历观察、分析,交流的过程,逐步提高从函数图象中感受其规律的能力。
情感态度与价值观
提高学生的观察、分析的能力和对图形的感知水平,使学生从整体上领悟研究函数的一般要求。
重点
理解并掌握反比例函数的图象和性质,并能利用它们解决一些综合问题
难点
学会从图象上分析、解决问题,理解反比例函数的性质。
教学过程
教学设计 与 师生互动
备 注
第一步:复习引入:
1.什么是反比例函数?
2.反比例函数的图象是什么?有什么性质?
第二步:应用举例:
例1.(补充)若点A(-2,a)、B(-1,b)、C(3,c)在反比例函数(k<0)图象上,则a、b、c的大小关系怎样?
分析:由k<0可知,双曲线位于第二、四象限,且在每一象限内,y随x的增大而增大,因为A、B在第二象限,且-1>-2,故b>a>0;又C在第四象限,则c<0,所以
b>a>0>c
说明:由于双曲线的两个分支在两个不同的象限内,因此函数y随x的增减性就不能连续的看,一定要强调“在每一象限内”,否则,笼统说k<0时y随x的增大而增大,就会误认为3最大,则c最大,出现错误。
此题还可以画草图,比较a、b、c的大小,利用图象直观易懂,不易出错,应学会使用。
例2. (补充)如图, 一次函数y=kx+b的图象与反比例函数的图象交于A(-2,1)、B(1,n)两点
(1)求反比例函数和一次函数的解析式
(2)根据图象写出一次函数的值大于反比例函数的值的x的取值范围
分析:因为A点在反比例函数的图象上,可先求出反比例函数的解析式,又B点在反比例函数的图象上,代入即可求出n的值,最后再由A、B两点坐标求出一次函数解析式y=-x-1,第(2)问根据图象可得x的取值范围x<-2或0<x<1,这是因为比较两个不同函数的值的大小时,就是看这两个函数图象哪个在上方,哪个在下方。
例3:已知变量y与x成反比例,且当x=2时y=9(1)写出y与x之间的函数解析式和自变量的取值范围。
分析:要确定一个反比例函数的解析式,只需求出比例系数k。如果已知一对自变量与函数的对应值,就可以先求出比例系数,然后写出所要求的反比例函数。
例3、设汽车前灯电路上的电压保持不变,选用灯泡的电阻为R(Ω),通过电流的强度为I(A)。
(1)已知一个汽车前灯的电阻为30 Ω,通过的电流为0.40A,求I关于R的函数解析式,并说明比例系数的实际意义。
(2)如果接上新灯泡的电阻大于30 Ω,那么与原来的相比,汽车前灯的亮度将发生什么变化?
在例3的教学中可作如下启发:
(1)电流、电阻、电压之间有何关系?
(2)在电压U保持不变的前提下,电流强度I与电阻R成哪种函数关系?
(3)前灯的亮度取决于哪个变量的大小?如何决定?
先让学生尝试练习,后师生一起点评。
第三步:随堂练习:
1.当质量一定时,二氧化碳的体积V与密度p成反比例。且V=5m3时,p=1.98kg/m3
(1)求p与V的函数关系式,并指出自变量的取值范围。
(2)求V=9m3时,二氧化碳的密度。
2、已知反比例函数y=k/x(k≠0)的图像经过点(4,3),求当x=6时,y的值。
3、 已知y-2与x+a(其中a为常数)成正比例关系,且图像过点A(0,4)、B(-1,2),求y与x的函数关系式
4、已知一次函数y= -x+8和反比例函数y =
(1) k满足什么条件时,这两个函数在同一直角坐标系中的图象有两个交点?
( 2 ) 如果其中一个交点为(-1,9),求另一个交点坐标。
第四步:课后练习
1.已知反比例函数的图象在每个象限内函数值y随自变量x的增大而减小,且k的值还满足≥2k-1,若k为整数,求反比例函数的解析式
2.已知一次函数的图像与反比例函数的图像交于A、B两点,且点A的横坐标和点B的纵坐标都是-2 ,
求(1)一次函数的解析式;
(2)△AOB的面积
答案:1.或或
2.(1)y=-x+2,(2)面积为6
课后作业
课后反思:
展开阅读全文