收藏 分销(赏)

山东省淄博市高青县第三中学九年级数学上册 23.1 图形的旋转(第2课时)教案 新人教版.doc

上传人:s4****5z 文档编号:7623887 上传时间:2025-01-10 格式:DOC 页数:4 大小:100KB
下载 相关 举报
山东省淄博市高青县第三中学九年级数学上册 23.1 图形的旋转(第2课时)教案 新人教版.doc_第1页
第1页 / 共4页
山东省淄博市高青县第三中学九年级数学上册 23.1 图形的旋转(第2课时)教案 新人教版.doc_第2页
第2页 / 共4页
山东省淄博市高青县第三中学九年级数学上册 23.1 图形的旋转(第2课时)教案 新人教版.doc_第3页
第3页 / 共4页
山东省淄博市高青县第三中学九年级数学上册 23.1 图形的旋转(第2课时)教案 新人教版.doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、23.1 图形的旋转 教学内容 1对应点到旋转中心的距离相等 2对应点与旋转中心所连线段的夹角等于旋转角 3旋转前后的图形全等及其它们的运用 教学目标 理解对应点到旋转中心的距离相等;理解对应点与旋转中心所连线段的夹角等于旋转角;理解旋转前、后的图形全等掌握以上三个图形的旋转的基本性质的运用 先复习旋转及其旋转中心、旋转角和旋转的对应点概念,接着用操作几何、实验探究图形的旋转的基本性质 重难点、关键 1重点:图形的旋转的基本性质及其应用 2难点与关键:运用操作实验几何得出图形的旋转的三条基本性质 教学过程 一、复习引入 (学生活动)老师口问,学生口答 1什么叫旋转?什么叫旋转中心?什么叫旋转角

2、? 2什么叫旋转的对应点? 3请独立完成下面的题目如图,点O是六个正三角形的公共顶点,正六边形ABCDEF能否看做是某条线段绕O点旋转若干次所形成的图形? (老师点评)分析:能看做是一条边(如线段AB)绕O点,按照同一方法连续旋转60、120、180、240、300形成的 二、探索新知 上面的解题过程中,能否得出什么结论,请回答下面的问题: 1A、B、C、D、E、F到O点的距离是否相等? 2对应点与旋转中心所连线段的夹角BOC、COD、DOE、EOF、FOA是否相等? 3旋转前、后的图形这里指三角形OAB、OBC、OCD、ODE、OEF、OFA全等吗? 老师点评:(1)距离相等,(2)夹角相等

3、,(3)前后图形全等,那么这个是否有一般性?下面请看这个实验 请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(ABC),然后围绕旋转中心O转动硬纸板,在黑板上再描出这个挖掉的三角形(ABC),移去硬纸板(分组讨论)根据图回答下面问题(一组推荐一人上台说明) 1线段OA与OA,OB与OB,OC与OC有什么关系? 2AOA,BOB,COC有什么关系? 3ABC与ABC形状和大小有什么关系? 老师点评:1OA=OA,OB=OB,OC=OC,也就是对应点到旋转中心相等 2AOA=BOB=COC,我们把这三个

4、相等的角,即对应点与旋转中心所连线段的夹角称为旋转角 3ABC和ABC形状相同和大小相等,即全等 综合以上的实验操作和刚才作的(3),得出 (1)对应点到旋转中心的距离相等; (2)对应点与旋转中心所连线段的夹角等于旋转角; (3)旋转前、后的图形全等例1如图,ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B对应点的位置,以及旋转后的三角形分析:绕C点旋转,A点的对应点是D点,那么旋转角就是ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即BCB=ACD,又由对应点到旋转中心的距离相等,即CB=CB,就可确定B的位置,如图所示 解:(1)连接CD (2)以CB为一边作BCE,使得B

5、CE=ACD (3)在射线CE上截取CB=CB 则B即为所求的B的对应点 (4)连接DB 则DBC就是ABC绕C点旋转后的图形 例2如图,四边形ABCD是边长为1的正方形,且DE=,ABF是ADE的旋转图形 (1)旋转中心是哪一点? (2)旋转了多少度? (3)AF的长度是多少?(4)如果连接EF,那么AEF是怎样的三角形? 分析:由ABF是ADE的旋转图形,可直接得出旋转中心和旋转角,要求AF的长度,根据旋转前后的对应线段相等,只要求AE的长度,由勾股定理很容易得到ABF与ADE是完全重合的,所以它是直角三角形 解:(1)旋转中心是A点 (2)ABF是由ADE旋转而成的 B是D的对应点 DA

6、B=90就是旋转角 (3)AD=1,DE= AE= 对应点到旋转中心的距离相等且F是E的对应点 AF= (4)EAF=90(与旋转角相等)且AF=AE EAF是等腰直角三角形 三、巩固练习 教材P58 练习1、2、3 四、应用拓展例3如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L、M在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系 分析:要用旋转的思想说明就是要用旋转中心、旋转角、对应点的知识来说明 解:四边形ABCD、四边形AKLM是正方形 AB=AD,AK=AM,且BAD=KAM为旋转角且为90 ADM是以A为旋转中心,BAD为旋转角由ABK旋转而成的 BK=DM 五、归纳小结(学生总结,老师点评) 本节课应掌握: 1对应点到旋转中心的距离相等; 2对应点与旋转中心所连线段的夹角等于旋转角; 3旋转前、后的图形全等及其它们的应用

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服