1、图形的旋转学习目标:知识目标 掌握旋转的有关概念及性质;过程与方法目标通过观察、操作、交流、归纳等过程,培养学生观察能力、探究问题的能力以及与人合作交流的能力。情感目标通过小组合作交流活动,培养学生合作学习的意识和研究探索的精神。教学过程(一)创设情景,引入新知观察下列图片:(1)时钟上的秒针在不停的转动;(2)大风车的转动;(3)飞速转动的电风扇叶片;(4)汽车上的括水器(5)由平面图形转动而产生的奇妙图案。这些情景中的转动现象,有什么共同特征?(二)探索新知,形成概念1.建立旋转的概念试一试,请同学们尝试用自己的语言来描述以下旋转.抽象出点的旋转AB(图1)O问题:单摆上小球的转动由位置A
2、转到B,它绕着哪一个点转动?沿着什么方向(顺时针或逆时针)?转动了多少角度?抽象出线的旋转OABCD(图2)抽象出三角形的旋转OABCFDE(图3)或图1:在同一平面内,点A绕着定点O旋转某一角度得到点B;图2:在同一平面内,线段AB绕着定点O旋转某一角度得到线段CD;图3:在同一平面内,三角形ABC绕着定点O旋转某一角度得到三角形DEF。旋转定义:像这样,把一个图形绕着某一点O按某一方向(逆时针方向或顺时针方向)转动一个角度的图形变换叫做旋转(rotation).点O叫做旋转中心,转动的角叫做旋转角。旋转的三个要素:_、_、_。情景问题:请同学们观察图3,点A,线段AB,ABC分别转到了什么
3、位置?请找出图3中其他的对应点、对应线段、对应角,并指出旋转中心和旋转角度。 2应用旋转的概念解决问题CABOD(1)如图,ABO绕点O旋转得到CDO,则:点B的对应点是点_;线段OB的对应线段是线段_;线段AB的对应线段是线段_;A的对应角是_;B的对应角是_;旋转中心是点_;旋转的角是 _ 。 (2)如图,香港特别行政区区旗中央的紫荆花图案由5个相同的花瓣组成,它是由其中的一瓣经过几次旋转得到的? 旋转角AOB多少度?你知道COD等于多少度吗? ABODC OABCFDE(三)实践操作,再探新知做一做:如图,在硬纸板上,挖出一个三角形ABC,再挖一个小洞O作为旋转中心,硬纸板下面放一张白纸
4、。先在纸上描出这个挖掉的三角形图案(ABC),然后围绕旋转中心转动硬纸板,再描出这个挖掉的三角形(DEF),移开硬纸板。问题:请指出旋转中心和各对应点,哪一个角是旋转角?1从我们看到的旋转现象以及你所完成的实验中,你认为旋转主要因素是什么?2在图形的旋转过程中,哪些发生了改变?哪些没有发生改变? 3你能通过度量角的方法得出旋转角度吗?你准备度量哪个角?(四)巩固新知,形成技能1如图,如果把钟表的指针看做四边形AOBC,它绕O点旋转得到四边形DOEF.在这个旋转过程中: (1)旋转中心是什么? (2)经过旋转,点A、B分别移动到什么位置?(3)旋转角是什么?(4)AO与DO的长有什么关系?BO与EO呢?(5)AOD与BOE有什么大小关系?OABDECFARPBQC2如图,正方形ABCD中,E是AD上一点,将CDE逆时针旋转后得到CBM.如连结EM,那么CEM是怎样的三角形?CABDEM3如图:P是等边DABC内的一点,把DABP通过旋转分别得到DBQC和DACR, (1)指出旋转中心、旋转方向和旋转角度? (2) DACR是否可以直接通过把DBQC旋转得到?4.如图,如果正方形CDEF与正方形ABCD是一边重合的两个正方形,那么正DCABEF方形CDEF能否看成是正方形ABCD旋转得到?如果能,请指出旋转中心、旋转方向、旋转角度及对应点。