收藏 分销(赏)

八年级数学教案 正方形教学设计.doc

上传人:s4****5z 文档编号:7619496 上传时间:2025-01-10 格式:DOC 页数:6 大小:59.50KB
下载 相关 举报
八年级数学教案 正方形教学设计.doc_第1页
第1页 / 共6页
八年级数学教案 正方形教学设计.doc_第2页
第2页 / 共6页
八年级数学教案 正方形教学设计.doc_第3页
第3页 / 共6页
八年级数学教案 正方形教学设计.doc_第4页
第4页 / 共6页
八年级数学教案 正方形教学设计.doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

1、初二数学教案 正方形教学设计教学目标知识与技能1掌握正方形的概念、性质和判定,并会用它们进行有关的论证和计算2理解正方形与平行四边形、矩形、菱形的联系和区别过程与方法经历探索正方形有关性质、判定重要条件的过程。在观察中寻求新知,在探索中发展推理能力,逐步掌握说理的基本方法。情感态度与价值观通过正方形与平行四边形、矩形、菱形的联系的教学对学生进行辩证唯物主义教育,提高学生的逻辑思维能力重点正方形的定义及正方形与平行四边形、矩形、菱形的联系 难点正方形与矩形、菱形的关系及正方形性质与判定的灵活运用 教学过程备 注教学设计 与 师生互动第一步:课堂引入1做一做:用一张长方形的纸片(如图所示)折出一个

2、正方形学生在动手做中对正方形产生感性认识,并感知正方形与矩形的关系问题:什么样的四边形是正方形?正方形定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形指出:正方形是在平行四边形这个大前提下定义的,其定义包括了两层意: (1)有一组邻边相等的平行四边形 (菱形)(2)有一个角是直角的平行四边形 (矩形)2【问题】正方形有什么性质?由正方形的定义可以得知,正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形所以,正方形具有矩形的性质,同时又具有菱形的性质归纳、总结正方形的性质: 因为正方形是特殊的平行四边形,还是特殊的矩形,特殊的菱形,所以它具有这些图形性质的综合,引导学生从角、边

3、、对角线上归纳总结。正方形性质定理1:正方形的四个角都是直角,四条边都相等。正方形性质定理2:正方形的两条对角线相等并且互相垂直平分,每一条对角线平分一组对角。第二步:应用举例:例1(教材P111的例4) 求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形已知:四边形ABCD是正方形,对角线AC、BD相交于点O(如图)求证:ABO、BCO、CDO、DAO是全等的等腰直角三角形证明: 四边形ABCD是正方形, AC=BD, ACBD,AO=CO=BO=DO(正方形的两条对角线相等,并且互相垂直平分)ABO、BCO、CDO、DAO都是等腰直角三角形,并且 ABO BCOCDODAO 例2

4、 (补充)已知:如图,正方形ABCD中,对角线的交点为O,E是OB上的一点,DGAE于G,DG交OA于F求证:OE=OF 分析:要证明OE=OF,只需证明AEODFO,由于正方形的对角线垂直平分且相等,可以得到AOE=DOF=90,AO=DO,再由同角或等角的余角相等可以得到EAO=FDO,根据ASA可以得到这两个三角形全等,故结论可得 证明: 四边形ABCD是正方形, AOE=DOF=90,AO=DO(正方形的对角线垂直平分且相等)又 DGAE, EAO+AEO=EDG+AEO=90 EAO=FDO AEO DFO OE=OF 例3 (补充)已知:如图,四边形ABCD是正方形,分别过点A、C

5、两点作l1l2,作BMl1于M,DNl1于N,直线MB、DN分别交l2于Q、P点求证:四边形PQMN是正方形分析:由已知可以证出四边形PQMN是矩形,再证ABMDAN,证出AM=DN,用同样的方法证AN=DP即可证出MN=NP从而得出结论证明: PNl1,QMl1, PNQM,PNM=90 PQNM, 四边形PQMN是矩形 四边形ABCD是正方形 BAD=ADC=90,AB=AD=DC(正方形的四条边都相等,四个角都是直角) 1+2=90又 3+2=90, 1=3 ABMDAN AM=DN 同理 AN=DP AM+AN=DN+DP即 MN=PN 四边形PQMN是正方形(有一组邻边相等的矩形是正

6、方形)例4:已知:分别延长等腰直角三角形OAB的两条直角边AO和BO ,使AO=OC,BO=OD,求证:四边形ABCD是正方形。第二步:应用举例:例1(教材P111的例4) 求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形已知:四边形ABCD是正方形,对角线AC、BD相交于点O(如图)求证:ABO、BCO、CDO、DAO是全等的等腰直角三角形证明: 四边形ABCD是正方形, AC=BD, ACBD,AO=CO=BO=DO(正方形的两条对角线相等,并且互相垂直平分)ABO、BCO、CDO、DAO都是等腰直角三角形,并且 ABO BCOCDODAO 例2 (补充)已知:如图,正方形AB

7、CD中,对角线的交点为O,E是OB上的一点,DGAE于G,DG交OA于F求证:OE=OF 分析:要证明OE=OF,只需证明AEODFO,由于正方形的对角线垂直平分且相等,可以得到AOE=DOF=90,AO=DO,再由同角或等角的余角相等可以得到EAO=FDO,根据ASA可以得到这两个三角形全等,故结论可得 证明: 四边形ABCD是正方形, AOE=DOF=90,AO=DO(正方形的对角线垂直平分且相等)又 DGAE, EAO+AEO=EDG+AEO=90 EAO=FDO AEO DFO OE=OF 例3 (补充)已知:如图,四边形ABCD是正方形,分别过点A、C两点作l1l2,作BMl1于M,

8、DNl1于N,直线MB、DN分别交l2于Q、P点求证:四边形PQMN是正方形分析:由已知可以证出四边形PQMN是矩形,再证ABMDAN,证出AM=DN,用同样的方法证AN=DP即可证出MN=NP从而得出结论证明: PNl1,QMl1, PNQM,PNM=90 PQNM, 四边形PQMN是矩形 四边形ABCD是正方形 BAD=ADC=90,AB=AD=DC(正方形的四条边都相等,四个角都是直角) 1+2=90又 3+2=90, 1=3 ABMDAN AM=DN 同理 AN=DP AM+AN=DN+DP即 MN=PN 四边形PQMN是正方形(有一组邻边相等的矩形是正方形)例4:已知:分别延长等腰直

9、角三角形OAB的两条直角边AO和BO ,使AO=OC,BO=OD,求证:四边形ABCD是正方形。 例5:已知:点A,、B,、C,、D,分别是正方形 ABCD四条边上的 点,并且AA,=BB,=CC,=DD。求证:四边形A,B,C,D,是正方形。第三步:、随堂练习1正方形的四条边_ _,四个角_ _,两条对角线_ _2下列说法是否正确,并说明理由ABCDEF对角线相等的菱形是正方形;( )对角线互相垂直的矩形是正方形;( )对角线垂直且相等的四边形是正方形;( )四条边都相等的四边形是正方形;( )四个角相等的四边形是正方形( )1 已知:如图,四边形ABCD为正方形,E、F分别为CD、CB延长

10、线上的点,且DEBF求证:AFEAEF4如图,E为正方形ABCD内一点,且EBC是等边三角形,求EAD与ECD的度数第四步:课后反思:1已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且DE=BF求证:EAAF2已知:如图,ABC中,C=90,CD平分ACB,DEBC于E,DFAC于F求证:四边形CFDE是正方形3已知:如图,正方形ABCD中,E为BC上一点,AF平分DAE交CD于F,求证:AE=BE+DF第五步:反馈归纳 (1)正方形是怎样的平行四边形?,有一组邻边相等,且有一个角是直角的平行四边形;(2)正方形是怎样的矩形?有一组邻边相等的矩形;(3)正方形是怎样的菱形?有一个角是直角的菱形;(4)明确四者之间的关系!(5)判定一个平行四边形是正方形,还应具备什么条件?方法1(6)判定一个矩形是正方形还应具备什么条件?方法2;(7)判定一个菱形是正方形还应具备什么条件?方法3;(8)小结:判定正方形的方法有三种。知识再现: 对边平行 边 四边相等 四个角都是直角 角正方形 对角线相等 互相垂直 对角线 互相平分 平分一组对角课后反思 :

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服