1、第2课时配方法的基本形式理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题通过复习可直接化成x2p(p0)或(mxn)2p(p0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤重点讲清直接降次有困难,如x26x160的一元二次方程的解题步骤难点将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧一、复习引入(学生活动)请同学们解下列方程:(1)3x215(2)4(x1)290(3)4x216x169(4)4x216x7老师点评:上面的方程都能化成x2p或(mxn)2p(p0)的形式,那么可得x或mxn(p0)如:4x216x16(
2、2x4)2,你能把4x216x7化成(2x4)29吗?二、探索新知列出下面问题的方程并回答:(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?(2)能否直接用上面前三个方程的解法呢?问题:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,求场地的长和宽各是多少?(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有此特征(2)不能既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:x26x160移项x26x16两边加(6/2)2使左边配成x22bxb2的形式x26x321
3、69左边写成平方形式(x3)225降次x35即x35或x35解一次方程x12,x28可以验证:x12,x28都是方程的根,但场地的宽不能是负值,所以场地的宽为2 m,长为8 m.像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解例1用配方法解下列关于x的方程:(1)x28x10(2)x22x0分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上解:略三、巩固练习教材第9页练习1,2.(1)(2)四、课堂小结本节课应掌握:左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程五、作业布置教材第17页复习巩固2,3.(1)(2)