资源描述
1.1等腰三角形
课 题
1.1等腰三角形(2)
授课时间
年月日
教学目标
知识与技能:
①探索——发现——猜想——证明等腰三角形中相等的线段,进一步熟悉证明的基本步骤和书写格式,体会证明的必要性;
过程与方法:
让学生进一步体会证明是探索活动的自然延续和必要发展,发展学生的初步的演绎逻辑推理的能力
情感与价值:
鼓励学生积极参与数学活动,激发学生的好奇心和求知欲;
教学重点
能够用综合法证明有关三角形和等腰三角形的一些结论.
教学难点
在命题的变式中,发展学生提出问题的能力,拓展命题的能力,从而提高学生的学习能力和思维能力,提高学生学习的主体性;。
教学准备
画图工具
教学方法
讲解和小组讨论
第一环节:提出问题,引入新课
在回忆上节课等腰三角形性质的基础上,提出问题:
在等腰三角形中作出一些线段(如角平分线、中线、高等),你能发现其中一些相等的线段吗?你能证明你的结论吗?
第二环节:自主探究
活动内容:在等腰三角形中自主作出一些线段(如角平分线、中线、高等),观察其中有哪些相等的线段,并尝试给出证明。
教师应注意给予适度的引导,如可以渐次提出问题:
你可能得到哪些相等的线段?
你如何验证你的猜测?
你能证明你的猜测吗?试作图,写出已知、求证和证明过程;
还可以有哪些证明方法?
通过学生的自主探究和同伴的交流,学生一般都能在直观猜测、测量验证的基础上探究出:
等腰三角形两个底角的平分线相等;等腰三角形腰上的高相等;等腰三角形腰上的中线相等.并对这些命题给予多样的证明。
如对于“等腰三角形两底角的平分线相等”,学生得到了下面的证明方法:
第三环节:经典例题变式练习
在课本图1—4的等腰三角形ABC中,
(1)如果∠ABD=∠ABC,∠ACE=∠ACB呢?由此,你能得到一个什么结论?
(2)如果AD=AC,AE=AB,那么BD=CE吗?如果AD=AC,AE=AB呢?由此你得到什么结论?
第四环节:拓展延伸,探索等边三角形性质
活动内容:提请学生在上面等要三角形性质定理的基础上,思考等边三角形的特殊性质:等边三角形三个内角都相等并且每个内角都等于60°.
已知:如图,ΔABC中,AB=BC=AC.
求证:∠A=∠B=∠C=60°.
第五环节:随堂练习及时巩固
活动内容:在探索得到了等边三角形的性质的基础上,让学生独立完成以下练习。如图,已知△ABC和△BDE都是等边三角形.求证:AE=CD
第六环节:探讨收获课时小结
本节课我们通过观察探索、发现并证明了等腰三角形中相等的线段,并由特殊结论归纳出一般结论,
作业布置:P4习题3,4
课后反思
展开阅读全文