1、18.2函数的图象(2)知识技能目标1.掌握用描点法画出一些简单函数的图象; 2.理解解析法和图象法表示函数关系的相互转换.过程性目标1.结合实际问题,经历探索用图象表示函数的过程; 2.通过学生自己动手,体会用描点法画函数的图象的步骤.教学过程一、创设情境问题1 在前面,我们曾经从如图所示的气温曲线上获得许多信息,回答了一些问题现在让我们来回顾一下 二、探究归纳先考虑一个简单的问题:你是如何从图上找到各个时刻的气温的?分析 图中,有一个直角坐标系,它的横轴是t轴,表示时间;它的纵轴是T轴,表示气温这一气温曲线实质上给出了某日的气温T ()与时间t(时)的函数关系例如,上午10时的气温是2,表
2、现在气温曲线上,就是可以找到这样的对应点,它的坐标是(10,2)实质上也就是说,当t10时,对应的函数值T2气温曲线上每一个点的坐标(t,T),表示时间为t时的气温是T问题2 如图,这是2004年3月23日上证指数走势图,你是如何从图上找到各个时刻的上证指数的?分析 图中,有一个直角坐标系,它的横轴表示时间;它的纵轴表示上证指数这一指数曲线实质上给出了3月23日的指数与时间的函数关系例如,下午14:30时的指数是1746.26,表现在指数曲线上,就是可以找到这样的对应点,它的坐标是(14:30, 1746.26)实质上也就是说,当时间是14:30时,对应的函数值是1746.26上面气温曲线和指
3、数走势图是用图象表示函数的两个实际例子一般来说,函数的图象是由直角坐标系中的一系列点组成的图形图象上每一点的坐标(x,y)代表了函数的一对对应值,它的横坐标x表示自变量的某一个值,纵坐标y表示与它对应的函数值三、实践应用例1 画出函数yx1的图象分析 要画出一个函数的图象,关键是要画出图象上的一些点,为此,首先要取一些自变量的值,并求出对应的函数值解 取自变量x的一些值,例如x3,2,1,0,1,2,3 ,计算出对应的函数值为表达方便,可列表如下:由这一系列的对应值,可以得到一系列的有序实数对:,(3,2),(2,1),(1,0),(0,1),(1,2),(2,3),(3,4),在直角坐标系中
4、,描出这些有序实数对(坐标)的对应点,如图所示通常,用光滑曲线依次把这些点连起来,便可得到这个函数的图象,如图所示这里画函数图象的方法,可以概括为列表、描点、连线三步,通常称为描点法例2 画出函数的图象分析 用描点法画函数图象的步骤:分为列表、描点、连线三步解 列表:描点:用光滑曲线连线: 四、交流反思由函数解析式画函数图象,一般按下列步骤进行:1.列表:列表给出自变量与函数的一些对应值;2.描点:以表中对应值为坐标,在坐标平面内描出相应的点;3.连线:按照自变量由小到大的顺序,把所描各点用光滑的曲线连结起来描出的点越多,图象越精确有时不能把所有的点都描出,就用光滑的曲线连结画出的点,从而得到
5、函数的近似的图象五、检测反馈1.在所给的直角坐标系中画出函数的图象(先填写下表,再描点、连线)2.画出函数的图象(先填写下表,再描点、然后用光滑曲线顺次连结各点)3.(1)画出函数y2x1的图象(在2与2之间,每隔0.5取一个x值,列表;并在直角坐标系中描点画图)(2)判断下列各有序实数对是不是函数y2x1的自变量x与函数y的一对对应值,如果是,检验一下具有相应坐标的点是否在你所画的函数图象上:(2.5,4),(0.25,0.5),(1,3),(2.5,4)4.(1)画出函数的图象(在4与4之间,每隔1取一个x值,列表;并在直角坐标系中描点画图)(2)判断下列各有序实数对是不是函数的自变量x与函数y的一对对应值,如果是,检验一下具有相应坐标的点是否在你所画的函数图象上:,(1,3),5.画出下列函数的图象:(1)y4x1; (2)y4x1