1、1.5有理数的减法学习目标1掌握有理数减法法则并熟练地进行有理数减法运算;2培养观察、分析、归纳及运算能力重点:有理数减法法则难点:有理数减法法则学习过程一、复习回顾1、计算:(1)(-2.6)+(-3.1); (2)(-2)+3; (3)8+(-3); (4)(-6.9)+02、化简下列各式符号:(1)-(-6); (2)-(+8); (3)+(-7);(4)+(+4); (5)-(-9); (6)-(+3)3、填空:(1)_+6=20; (2)20+_=17; (3)_+(-2)=-20; (4)(-20)+_=-6在第3题中,已知一个加数与和,求另一个加数,在小学里就是减法运算如_+6=
2、20,就是求20-6=14,所以14+6=20那么(2),(3),(4)是怎样算出来的?这就是有理数的减法,减法是加法的逆运算二、自主探究有理数减法法则问题1 (1)(+10)-(+3)=_; (2)(+10)+(-3)=_通过计算你发现了什么?发现:两式的结果相同,即(+10)-(+3)=(+10)+(-3)思考:减法可以转化成加法运算吗?如果是,是怎样转化的?这是否具有一般性?问题2 (1)(+10)-(-3)=_; (2)(+10)+(+3)=_对于(1),根据减法意义,这就是要求一个数,使它与-3相加等于+10,这个数是多少?(2)的结果是多少?于是,(+10)-(-3)=(+10)+
3、(+3)归纳有理数减法法则:减去一个数,等于加上这个数的相反数。强调运用此法则时注意“两变”:一是减法变为加法;二是减数变为其相反数三、运用举例 变式练习例1计算下列各式:(1)(18)(4);(2)(18)4;(3)(18)(4);(4)418剖析:每个小题均是两个数的差,直接利用有理数的减法法则,先把减法转化为加法,再计算结果解:(1)(18)(4)(18)(4)14(2)(18)4(18)(4)22(3)(18)(4)(18)(4)22(4)4184(18)14例2已知a3,b5,c8,求下列各式的值(1)abc;(2)abc;(3)abc剖析:求含字母的代数式的值时,先代入再计算解:当
4、a3,b5,c8时,(1)abc(3)5(8)(3)5(8)10(2)abc(3)5(8)(3)(5)(8)16(3)abc(3)5(8)(3)(5)(8)0说明:已知字母表示的数,求代数式的值时,解题格式应为:先写出字母所表示的数,然后代入式子中再用有理数的加减法则运算例3计算:(1)() (); (2)7028(19)(24)(12);剖析:第(1)小题是求3个分数的差,应先用减法法则,再化成同分母的分数进行加法运算第(2)小题中的前两个数7028,实质是70(28),然后把算式中的减法转化为加法 解:(1) 或(2)原式(70)(28)(19)(24)(12) (70)(28)(24)(
5、19)(12) (122)31 91说明:对于有理数的减法运算,只要运用减法法则,把减法转化为加法,然后利用加法法则计算结果四、随堂练习1、计算:(1)6-9; (2)(+4)-(-7); (3)(-5)-(-8);(4)(-4)-9; (5)0-(-5); (6)0-52、计算:(1)15-21; (2)(-17)-(-12); (3)(-2.5)-5.9;(4)1.9-(-0.6); (5)()- ; (6)- 3、 计算:(1)(-3)-6-(-2); (2)15-(6-9)4、15比5高多少?15比-5高多少?四、小结1、由于把减数变为它的相反数,从而减法转化为加法有理数的加法和减法,
6、当引进负数后就可以统一用加法来解决;2、不论减数是正数、负数或是零,都符合有理数减法法则在使用法则时,注意被减数是永不变的。五、作业1、计算:(1)-8-8; (2)(-8)-(-8); (3)8-(-8); (4)8-8;(5)0-6; (6)6-0; (7)0-(-6); (8)(-6)-02、计算:(1)16-47; (2)28-(-74); (3)(-37)-(-85); (4)(-54)-14;(5)123-190; (6)(-112)-98; (7)(-131)-(-129); (8)341-2493、计算:(1)1.6-(-2.5); (2)0.4-1; (3)(-3.8)-7; (4)(-5.9)-(-6.1);(5)(-2.3)-3.6; (6)4.2-5.7; (7)(-3.71)-(-1.45); (8)6.18-(-2.93)