1、1712反比例函数的图象和性质(1)一、教学目标1会用描点法画反比例函数的图象2结合图象分析并掌握反比例函数的性质3体会函数的三种表示方法,领会数形结合的思想方法二、重点、难点1重点:理解并掌握反比例函数的图象和性质2难点:正确画出图象,通过观察、分析,归纳出反比例函数的性质三、例题的意图分析教材第48页的例2是让学生经历用描点法画反比例函数图象的过程,一方面能进一步熟悉作函数图象的方法,提高基本技能;另一方面可以加深学生对反比例函数图象的认识,了解函数的变化规律,从而为探究函数的性质作准备。补充例1的目的一是复习巩固反比例函数的定义,二是通过对反比例函数性质的简单应用,使学生进一步理解反比例
2、函数的图象特征及性质。补充例2是一道典型题,是关于反比例函数图象与矩形面积的问题,要让学生理解并掌握反比例函数解析式(k0)中的几何意义。四、课堂引入提出问题:1一次函数ykxb(k、b是常数,k0)的图象是什么?其性质有哪些?正比例函数ykx(k0)呢?2画函数图象的方法是什么?其一般步骤有哪些?应注意什么?3反比例函数的图象是什么样呢?五、例习题分析例2见教材P48,用描点法画图,注意强调:(1)列表取值时,x0,因为x0函数无意义,为了使描出的点具有代表性,可以“0”为中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y值(2)由于函数图象的特征还不清楚,所以要尽量多取
3、一些数值,多描一些点,这样便于连线,使画出的图象更精确(3)连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线(4)由于x0,k0,所以y0,函数图象永远不会与x轴、y轴相交,只是无限靠近两坐标轴例1(补充)已知反比例函数的图象在第二、四象限,求m值,并指出在每个象限内y随x的变化情况?分析:此题要考虑两个方面,一是反比例函数的定义,即(k0)自变量x的指数是1,二是根据反比例函数的性质:当图象位于第二、四象限时,k0,则m10,不要忽视这个条件略解:是反比例函数 m231,且m10 又图象在第二、四象限 m10解得且m1 则例2(补充)如图,过反比例函数(x0)的图象上任意两点A
4、、B分别作x轴的垂线,垂足分别为C、D,连接OA、OB,设AOC和BOD的面积分别是S1、S2,比较它们的大小,可得( )(A)S1S2 (B)S1S2 (C)S1S2 (D)大小关系不能确定分析:从反比例函数(k0)的图象上任一点P(x,y)向x轴、y轴作垂线段,与x轴、y轴所围成的矩形面积,由此可得S1S2 ,故选B六、随堂练习1已知反比例函数,分别根据下列条件求出字母k的取值范围(1)函数图象位于第一、三象限(2)在第二象限内,y随x的增大而增大2函数yaxa与(a0)在同一坐标系中的图象可能是( ) 3在平面直角坐标系内,过反比例函数(k0)的图象上的一点分别作x轴、y轴的垂线段,与x轴、y轴所围成的矩形面积是6,则函数解析式为 七、课后练习1若函数与的图象交于第一、三象限,则m的取值范围是 2反比例函数,当x2时,y ;当x2时;y的取值范围是 ; 当x2时;y的取值范围是 3 已知反比例函数,当时,y随x的增大而增大,求函数关系式答案:3