1、生活中的立体图形教学过程设计分析备注第四章 图形的初步认识教学目的: 1、通过学习能认识常见的图形,并能对常见的图形进行分类、分辨;2、能够对实际中的物体进行抽象化为图形;3、能了解多面体中的欧拉公式。教学分析:重点:基本图形的认识与分辨;难点:欧拉公式的应用与认识。教具准备:每个小组准备相关的立体图形及实际生活物品。教学设想: 强调几何学与实际生活的理论联系实际。教学过程:一、知识导向:本节从学生的生活周围入手,通过观察认识到生活以生活的周围存在着规则的和不规则的物体,规则物体是我们进一步学习和研究的对象。对于教材中出现的一些概念,如圆柱、棱柱等,都不是定义,仅是描述性的说法。教学中不要求学
2、生掌握严格的概念,只要求能通过具体图形进行识别或判断。在教学中注意引导学生观察、体验数学概念的抽象和形成的过程。二、新课拆析:1、知识基础:我们都知道,我们的生活空间是一个三维的世界,我们生活中的生活中的物体都是立体的物体,而这些物体中有一部分是较有规则的,如:生活物体苹果、球天坛顶端塔顶粉笔盒笔筒类似图形球体圆锥棱锥棱柱圆柱2、知识形成: 图1 图2 图3 图4 图5在上面的图形中:(1) 图1所表示的立体图形是柱体(圆柱体);(2) 图2所表示的立体图形是柱体(棱柱体);(3) 图3所表示的立体图形是锥体(圆锥体);(4) 图4所表示的立体图形是球体;(5) 图5所表示的立体图形是锥体(棱
3、锥体);另外,棱柱有三棱柱、四棱柱、五棱柱、六棱柱等; 棱锥有三棱锥、四棱锥、五棱锥、六棱锥等;如: 三棱柱 四棱柱 五棱柱 六棱柱 三棱锥 四棱锥 五棱锥 六棱锥3、知识拓展:从下面的多个多面体: 正四面体 正方体 正八面体 经过我们数图中每一个多面体所具有的顶点数(V)、棱数(E)、和面数(F):多面体顶点数(V)面数(F)棱数(E)V+F-E正四面体4462正方体正八面体正十二面体正二十面体从上面的结果,伟大的数学家欧拉证明了:概括:欧拉公式 顶点数+面数-棱数=2三、巩固训练:126 exc1、2、3四、知识小结:本节课主要学习了实际物体与图形间的关系,知道了棱柱、棱锥、圆柱、圆锥的分类及分辨。五、家庭作业:127 exc1、2、3六、每日预题:1、各小组准备好各种规则的图形;2、一个物体是否从各个方向看都是一样的?七、教学反馈:数学的学习应是与实际相联系的数学,才是有用的数学,如何从实际物体中抽象出几何图形是重要的第一步。对于立体图形的认识只需学生懂得如何为分辨即可,不必对其所具的定义进行了解。对于欧拉公式,只是作为学生的一个课外的知识进行了解,但是公式的研究方法是我们必须学会的。在练习与习题中还需培养学生会画出常见的立体图形。