1、第十五章分式151分式151.1从分数到分式1以描述实际问题中的数量关系为背景抽象出分式的概念,建立数学模型,并理解分式的概念2能够通过分式的定义理解和掌握分式有意义的条件重点理解分式有意义的条件及分式的值为零的条件难点能熟练地求出分式有意义的条件及分式的值为零的条件一、复习引入1什么是整式?什么是单项式?什么是多项式?2判断下列各式中,哪些是整式?哪些不是整式?;1xy2;.二、探究新知1分式的定义(1)学生看教材的问题:一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行90千米所用时间,与以最大航速逆流航行60千米所用的时间相等,江水的流速为多少?分析:设江水的流速为v千米
2、/时轮船顺流航行90千米所用的时间为小时,逆流航行60千米所用时间为小时,所以.(2)学生完成教材第127页“思考”中的题观察:以上的式子,有什么共同点?它们与分数有什么相同点和不同点?可以发现,这些式子都像分数一样都是(即AB)的形式分数的分子A与分母B都是整数,而这些式子中的A,B都是整式,并且B中都含有字母归纳:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式巩固练习:教材第129页练习第2题2自学教材第128页思考:要使分式有意义,分式中的分母应满足什么条件?分式的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B0时,分式才有意义学生自学例1.例1下列分
3、式中的字母满足什么条件时分式有意义?(1);(2);(3);(4).解:(1)要使分式有意义,则分母3x0,即x0;(2)要使分式有意义,则分母x10,即x1;(3)要使分式有意义,则分母53b0,即b;(4)要使分式有意义,则分母xy0,即xy.思考:如果题目为:当x为何值时,分式无意义你知道怎么解题吗?巩固练习:教材第129页练习第3题3补充例题:当m为何值时,分式的值为0?(1);(2);(3).思考:当分式为0时,分式的分子、分母各满足什么条件?分析:分式的值为0时,必须同时满足两个条件:(1)分母不能为零;(2)分子为零答案:(1)m0;(2)m2;(3)m1.三、归纳总结1分式的概念2分式的分母不为0时,分式有意义;分式的分母为0时,分式无意义3分式的值为零的条件:(1)分母不能为零;(2)分子为零四、布置作业教材第133页习题15.1第2,3题在引入分式这个概念之前先复习分数的概念,通过类比来自主探究分式的概念,分式有意义的条件,分式值为零的条件,从而更好更快地掌握这些知识点,同时也培养学生利用类比转化的数学思想方法解决问题的能力