资源描述
目录
类型1:函数图像与运动变化过程 2
类型2:坐标系与图形变换 6
类型3:函数探究 8
类型4:二次函数 21
(1)二次函数图像与性质基础 21
(2)二次函数综合 22
类型5:一次函数、反比例函数 27
(1)反比例、一次函数基础 27
(2)反比例、一次函数综合 28
类型1:函数图像与运动变化过程
1. (18通州一模10)如图是我区某一天内的气温变化图,结合该图给出的信息写出一个正确的结论:__________________________________________________
2.(18平谷一模7)“龟兔赛跑”是同学们熟悉的寓言故事.如图所示,表示了寓言中的龟、兔的路程S和时间t的关系(其中直线段表示乌龟,折线段表示兔子).下列叙述正确的是
A.赛跑中,兔子共休息了50分钟
B.乌龟在这次比赛中的平均速度是0.1米/分钟
C.兔子比乌龟早到达终点10分钟
D.乌龟追上兔子用了20分钟
3.(18延庆一模8)某游泳池长25米,小林和小明两个人分别在游泳池的A,B两边,同时朝着另一边
游泳,他们游泳的时间为(秒),其中,到A边距离为y(米),图中的实
线和虚线分别表示小林和小明在游泳过程中y与t的对应关系.下面有四个推断:
①小明游泳的平均速度小于小林游泳的平均速度;
②小明游泳的距离大于小林游泳的距离;
③小明游75米时小林游了90米游泳;
④小明与小林共相遇5次;
其中正确的是
A.①② B.①③ C.③④ D.②④
4. (18石景山一模7)甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图线段和折线分别表示两车离甲地的距离(单位:千米)与时间(单位:小时)之间的函数关系.则下列说法正确的是( )
A.两车同时到达乙地
B.轿车在行驶过程中进行了提速
C.货车出发3小时后,轿车追上货车
D.两车在前80千米的速度相等
5.(18房山一模8)小宇在周日上午8:00从家出发,乘车1小时到达某活动中心参加实践活动.11:00时他在活动中心接到爸爸的电话,因急事要求他在12:00前回到家,他即刻按照来活动中心时的路线,以5千米/时的平均速度快步返回.同时,爸爸从家沿同一路线开车接他,在距家20千米处接上了小宇,立即保持原来的车速原路返回.设小宇离家 x 小时后,到达离家y千米的地方,图中折线OABCD表示 y 与 x 之间的函数关系.下列叙述错误的是( )
A.活动中心与小宇家相距22千米
B.小宇在活动中心活动时间为2小时
C.他从活动中心返家时,步行用了0.4小时
D.小宇不能在12:00前回到家
6.(18东城一模8)如图1是一座立交桥的示意图(道路宽度忽略不计), A为入口, F,G为出口,其 中直行道为AB,CG,EF,且AB=CG=EF ;弯道为以点O为圆心的一段弧,且, ,所对的圆心角均为90°.甲、乙两车由A口同时驶入立交桥,均以10m/s的速度行驶,从不同出口驶出. 其间两车到点O的距离y(m)与时间x(s)的对应关系如图2所示.结合题目信息,下列说法错误的是( )
A. 甲车在立交桥上共行驶8s B. 从F口出比从G口出多行驶40m
C. 甲车从F口出,乙车从G口出 D. 立交桥总长为150m
7.(18丰台一模8)如图1,荧光屏上的甲、乙两个光斑(可看作点)分别从相距8cm的A,B两点同时开始沿线段AB运动,运动过程中甲光斑与点A的距离S1(cm)与时间t (s)的函数关系图象如图2,乙光斑与点B的距离S2(cm)与时间t (s)的函数关系图象如图3,已知甲光斑全程的平均速度为1.5cm/s,且两图象中△P1O1Q1≌△P2Q2O2.下列叙述正确的是( )
B
A
乙
甲
8cm
图1
图3
图2
A.甲光斑从点A到点B的运动速度是从点B到点A的运动速度的4倍
B.乙光斑从点A到B的运动速度小于1.5cm/s
C.甲乙两光斑全程的平均速度一样
D.甲乙两光斑在运动过程中共相遇3次
8.(18门头沟一模8)甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距660米,二人同时出发,走了24分钟时,由于乙距离景点近,先到达等候甲,甲共走了30分钟也到达了景点与乙相遇.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,下列说法错误的是( )
A.甲的速度是70米/分; B.乙的速度是60米/分;
C.甲距离景点2100米; D.乙距离景点420米.
9.(18通州一模8)如图, 点为正六边形对角线的交点,机器人置于该正六边形的某顶点处.柱柱同学操控机器人以每秒1个单位长度的速度在图1中给出的线段路径上运行,柱柱同学将机器人运行时间设为t秒,机器人到点A距离设为y,得到函数图象如图2.通过观察函数图象,可以得到下列推断:
①该正六边形的边长为1; ②当时,机器人一定位于点;
③机器人一定经过点; ④机器人一定经过点;
其中正确的有( ).
A.①④ B. ①③ C. ①②③ D. ②③④
10. (18燕山一模8)小带和小路两个人开车从 A 城出发匀速行驶至 B城.在整个行驶过程中,小带和小路两人的车离开 A 城的距离 y(千米)与行驶的时间 t(小时)之间的函数关系如图所示。有下列结论; ①A、B 两城相距300千米;②小路的车比小带的车晚出发1小时,却早到1小时;③小路的车出发后2.5小时追上小带的车; ④当小带和小路的车相距50千米时,或。其中正确的结论有( )
A .①②③④ B .①②④ C .①② D .②③④
t(秒)
S(米)
800
600
400
300
200
O
50
180
220
B
C
A
D
11.(18怀柔一模7)2017年怀柔区中考体育加试女子800米耐力测试中,同时起跑的李丽和吴梅所跑的路程S(米)与所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD.下列说法正确的是( )
A.李丽的速度随时间的增大而增大
B.吴梅的平均速度比李丽的平均速度大
C.在起跑后180秒时,两人相遇
D.在起跑后50秒时,吴梅在李丽的前面
12.(18朝阳一模8)如图,△ABC是等腰直角三角形,∠A=90°,AB=6,点P是AB边上一动点(点P与点A不重合),以AP为边作正方形APDE,设AP=x,正方形APDE与△ABC重合部分(阴影部分)的面积为y,则下列能大致反映y与x的函数关系的图象是( )
13.(18大兴一模7). 如图,在矩形ABCD中,AB=2,BC=3,点P在矩形的边上沿B→C→D→A运动.设点P运动的路程为x,△ABP的面积为y,则y关于x的函数图象大致是( )
类型2:坐标系与图形变换
1.(18通州一模9)请你写出一个位于平面直角坐标系中第二象限内的点的坐标___________.
2. (18东城一模5)点A (4,3)经过某种图形变化后得到点B(-3,4),这种图形变化可以是( )
A.关于x轴对称
B.关于y轴对称
C.绕原点逆时针旋转90°
D.绕原点顺时针旋转90°
3.(18怀柔一模13)如图,这是怀柔区部分景点的分布图,若表示百泉山风景区的点的坐标为(0,1),表示慕田峪长城的点的坐标为(-5,-1),则表示雁栖湖的点的坐标为_________.
4.(18丰台一模6)如图,在平面直角坐标系中,点A的坐标为(2,1),
如果将线段OA绕点O逆时针方向旋转90°,那么点A的
对应点的坐标为( )
A.(-1,2) B.(-2,1)
C.(1,-2) D.(2,-1)
5.(18石景山一模6)如图,在平面直角坐标系中,点C,B,E在y轴上, Rt△ABC经过变化得到Rt△EDO,若点B的坐标为,OD=2,则这种变化可以是( )
A.△ABC绕点C顺时针旋转90°,再向下平移5个单位长度
B.△ABC绕点C逆时针旋转90°,再向下平移5个单位长度
C.△ABC绕点O顺时针旋转90°,再向左平移3个单位长度
D.△ABC绕点O逆时针旋转90°,再向右平移1个单位长度
6.(18朝阳一模14)如图,在平面直角坐标系xOy中,△O'A'B'可以看作是△OAB经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△OAB得到△O'A'B'的过程: .
7. (18房山一模16)如图,在平面直角坐标系xOy中,点A(-3,0) ,B(-1,2) .以原点O为旋转中心,将△AOB顺时针旋转90°,再沿x轴向右平移两个单位,得到△A’O’B’,其中点A’与点A对应,点B’与点B对应. 则点A’的坐标为__________,点B’的坐标为__________.
8.(18门头沟一模15)图1、图2的位置如图所示,如果将两图进行拼接(无覆盖),可以得到一个矩形,请利用学过的变换(翻折、旋转、轴对称)知识,将图2进行移动,写出一种拼接成矩形的过程_______________________________________________.
9.(18平谷一模15)如图,在平面直角坐标系xOy中,△OCD可以看作是△ABO经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△ABO得到△OCD的过程: .
10.(18延庆一模15)如图,在平面直角坐标系中,△DEF可以看作是△ABC经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△ABC得到△DEF的过程:
.
11.(18朝阳毕业21)在平面直角坐标系xOy中,△ABC的顶点分别为A(1,1),B(2,4),C(4,2).
(1)画出△ABC关于原点O对称的△A1B1C1;
(2)点 C关于x轴的对称点C2的坐标为 ;
(3)点C2向左平移m个单位后,落在△A1B1C1内部,写出一个满足条件的m的值: .
12.(18怀柔一模19)如图,在平面直角坐标系xOy中,每个小正方形的边长都为1,△DEF和△ABC的顶点都在格点上,回答下列问题:
(1)△DEF可以看作是△ABC经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△ABC得到△DEF的过程: ;
(2)画出△ABC绕点B逆时针旋转90º的图形△A′BC′;
(3)在(2)中,点C所形成的路径的长度为 .
类型3:函数探究
1.(18平谷一模25)如图,在△ABC中,∠C=60°,BC=3厘米,AC=4厘米,点P从点B出发,沿B→C→A以每秒1厘米的速度匀速运动到点A.设点P的运动时间为x秒,B、P两点间的距离为y厘米.
小新根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究.
下面是小新的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了x与y的几组值,如下表:
x(s)
0
1
2
3
4
5
6
7
y(cm)
0
1.0
2.0
3.0
2.7
2.7
m
3.6
经测量m的值是 (保留一位小数).
(2)建立平面直角坐标系,描出表格中所有各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:在曲线部分的最低点时,在△ABC中画出点P所在的位置.
2. (18延庆一模25)如图,点P是以O为圆心,AB为直径的半圆
上的动点,AB=6cm,设弦AP的长为cm,
△APO的面积为cm2,(当点P与点A或
点B重合时,y的值为0).
小明根据学习函数的经验,对函数y随
自变量x的变化而变化的规律进行了探究.
下面是小明的探究过程,请补充完整;
(1)通过取点、画图、测量、计算,得到了x与y的几组值,如下表:
x/cm
0.5
1
2
3
3.5
4
5
5.5
5.8
y/cm2
0.8
1.5
2.8
3.9
4.2
m
4.2
3.3
2.3
那么m= ;(保留一位小数)
(2)建立平面直角坐标系,描出以表中各组对应值为坐标的点,画出该函数图象.
(3)结合函数图象说明,当△APO的面积是4时,则AP的值约为 .(保留一位小数)
3.(18房山一模25) 如图,Rt△ABC,∠C=90°,CA=CB=4cm,点P为AB边上的一个动点,点E是CA边的中点, 连接PE,设A,P两点间的距离为xcm,P,E两点间的距离为y cm.
小安根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究.
下面是小安的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了与的几组值,如下表:
x/cm
0
1
2
3
4
5
6
7
8
y/cm
2.8
2.2
2.0
2.2
2.8
3.6
5.4
6.3
(说明:补全表格时相关数值保留一位小数)
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:
①写出该函数的一条性质:
;
②当时,的长度约为
cm.
4.(18石景山一模25)如图,半圆的直径,点在上且,点是半圆上的动点,过点作交(或的延长线)于点.设,.(当点与点或点重合时,的值为)
小石根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究.
下面是小石的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了与的几组值,如下表:
1
1.5
2
2.5
3
3.5
4
0
3.7
3.8
3.3
2.5
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数
的图象;
(3)结合画出的函数图象,解决问题:
当与直径所夹的锐角为时,的长度约为 .
5.(18怀柔一模25)如图,在等边△ABC中, BC=5cm,点D是线段BC上的一动点,连接AD,过点D作DE⊥AD,垂足为D,交射线AC与点E.设BD为x cm,CE为y cm.
小聪根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小聪的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了与的几组值,如下表:
x/cm
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
y/cm
5.0
3.3
2.0
0.4
0
0.3
0.4
0.3
0.2
0
(说明:补全表格上相关数值保留一位小数)
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:当线段BD是线段CE长的2倍时,BD的长度约为_______.
6.(18朝阳一模25)如图,AB是⊙O的直径,AB=4cm,C为AB上一动点,过点C的直线交⊙O于D、E两点,且∠ACD=60°,DF⊥AB于点F,EG⊥AB于点G,当点C在AB上运动时,设AF=cm,DE=cm(当的值为0或3时,的值为2),探究函数y随自变量x的变化而变化的规律.
(1)通过取点、画图、测量,得到了x与y的几组对应值,如下表:
x/cm
0
0.40
0.55
1.00
1.80
2.29
2.61
3
y/cm
2
3. 68
3.84
3.65
3.13
2.70
2
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:点F与点O重合时,DE长度约为 cm(结果保留一位小数).
7.(18西城一模25)如图,为⊙的直径上的一个动点,点在上,连接,过点作的垂线交⊙于点.已知,.设、两点间的距离为,、两点间的距离为.
某同学根据学习函数的经验,对函数随自变量的变化而变化的规律进行探究.
下面是该同学的探究过程,请补充完整:
(1)通过取点、画图、测量及分析,得到了与的几组值,如下表:
(说明:补全表格对的相关数值保留一位小数)
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.
(3)结合画出的函数图象,解决问题:当时,的长度均为__________.
8.(18丰台一模25)如图,Rt△ABC中,∠ACB = 90°,点D为AB边上的动点(点D不与点A,点B重合),过点D作ED⊥CD交直线AC于点E.已知∠A = 30°,AB = 4cm,在点D由点A到点B运动的过程中,设AD = xcm,AE = ycm.
小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小东的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了x与y的几组值,如下表:
x/cm
…
1
2
3
…
y/cm
…
0.4
0.8
1.0
1.0
0
4.0
…
(说明:补全表格时相关数值保留一位小数)
(2)在下面的平面直角坐标系中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:当AE =AD时,AD的长度约为 cm.
9.(18门头沟一模25)在正方形ABCD中, AC为对角线,AC上有一动点P,M是AB边的中点,连接PM、PB, 设、两点间的距离为,长度为.
小东根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究.
下面是小东的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了与的几组值,如下表:
6.0
7.4
(说明:补全表格时相关数值保留一位小数)
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.
(3)结合画出的函数图象,解决问题:的长度最小值约为__________.
10.(18大兴一模25)如图,在△ABC中,AB=4.41cm,BC=8.83cm,P是BC上一动点,连接AP,设P,C两点间的距离为cm,P,A两点间的距离为cm.(当点P与点C重合时,的值为0)小东根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究.
下面是小东的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了与的几组值,如下表:
x/cm
0
0.43
1.00
1.50
1.85
2.50
3.60
4.00
4.30
5.00
5.50
6.00
6.62
7.50
8.00
8.83
y/cm
7.65
7.28
6.80
6.39
6.11
5.62
4.87
4.47
4.15
3.99
3.87
3.82
3.92
4.06
4.41
(说明:补全表格时相关数值保留一位小数)
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:当PA=PC时,PC的长度约为 cm.(结果保留一位小数)
11.(18顺义一模25)如图,P是半圆弧上一动点,连接PA、PB,过圆心O作OC∥BP交PA于点C,连接CB.已知AB=6cm,设O,C两点间的距离为x cm,B,C两点间的距离为y cm.
小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究.
下面是小东的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了x与y的几组值,如下表:
x/cm
0
0.5
1
1.5
2
2.5
3
y/cm
3
3.1
3.5
4.0
5.3
6
(说明:补全表格时相关数据保留一位小数)
(2)建立直角坐标系,描出以补全后的表中各对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:直接写出△OBC周长C的取值范围是 .
12.(18通州一模25)如图,⊙的半径为,为⊙直径,点为半圆上一动点,点为弧的中点.连接,过点作,垂足为点.如果,求线段的长.
小何根据学习函数的经验,将此问题转化为函数问题解决.小何假设的长度为,线段的长度为.(当点与点重合时,长度为0),对函数随自变量的变化而变化的规律进行探究.
下面是小何的探究过程,请补充完整:(说明:相关数据保留一位小数)
(1)通过取点、画图、测量,得到了与的几组值,如下表:
x/cm
0
1
2
3
4
5
6
7
8
y/cm
0
1.6
2.5
3.3
4.0
4.7
5.8
5.7
当时,请你在上图中帮助小何完成作图,并使用刻度尺度量出线段的长度,填写在表格空白处.
(2)建立直角坐标系,描出以补全后的表中各组对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象解决问题: 当时,的长度约为_________ cm.
13.(18东城一模25)如图,在等腰△ABC中,AB=AC,点D,E分别为BC,AB的中点,连接AD.在线段AD 上任取一点P,连接PB ,PE.若BC =4,AD=6,设PD=x(当点P与点D重合时,x的值为0),PB+PE=y.
小明根据学习函数的经验,对函数y随自变量x的变换而变化的规律进行了探究.
下面是小明的探究过程,请补充完整:
(1)通过取点、画图、计算,得到了x与y的几组值,如下表:
x
0
1
2
3
4
5
6
y
5.2
4.2
4.6
5.9
7.6
9.5
(说明:补全表格时,相关数值保留一位小数).
(参考数据: ,,)
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)函数y的最小值为______________(保留一位小数),此时点P在图1中的位置为_____________.
14.(18海淀一模25)在研究反比例函数的图象与性质时,我们对函数解析式进行了深入分析.
首先,确定自变量的取值范围是全体非零实数,因此函数图象会被轴分成两部分;其次,分析解析式,得到随的变化趋势:当时,随着值的增大,的值减小,且逐渐接近于零,随着值的减小,的值会越来越大,由此,可以大致画出在时的部分图象,如图1所示:
利用同样的方法,我们可以研究函数的图象与性质. 通过分析解析式画出部分函数图象如图2所示.
(1)请沿此思路在图2中完善函数图象的草图并标出此函数图象上横坐标为0的点;(画出网格区域内的部分即可)
(2)观察图象,写出该函数的一条性质:____________________;
(3)若关于的方程有两个不相等的实数根,结合图象,直接写出实数的取值范围:___________________________.
15.(18燕山一模26)已知y是x的函数,自变量x的取值范围是x≠0的全体实数,下表是y与x的几组对应值.
x
…
-3
-2
-1
-
-
1
2
3
…
y
…
-
-
-
m
…
小华根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.
下面是小华的探究过程,请补充完整:
(1)从表格中读出,当自变量是-2时,函数值是 ;
(2)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;
(3)在画出的函数图象上标出x=2时所对应的点,并写出m=
(4)结合函数的图象,写出该函数的一条性质: .
类型4:二次函数
(1)二次函数图像与性质基础
1.(18朝阳毕业9)在平面直角坐标系xOy中,二次函数的图象如图所示,则方程的根的情况是
A.有两个相等的实数根
B.有两个不相等的实数根
C.没有实数根
D.无法判断
2.(18朝阳毕业13)抛物线y=x26x+5的顶点坐标为 .
3.(18大兴一模11)请写出一个开口向下,并且对称轴为直线x=1的抛物线的表达式y=
4.(18东城一模2) 当函数的函数值y随着x的增大而减小时,x的取值范围是
A. B. C. D.为任意实数
5. (18燕山一模12)写出经过点(0,0),(-2,0)的一个二次函数的解析式
(写一个即可)
6.(18顺义一模15)如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s的速度向点B、C、D、A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为 s时,四边形EFGH的面积最小,其最小值是 cm2.
(2)二次函数综合
1.(18平谷一模26)在平面直角坐标系xOy中,抛物线的对称轴为直线x =2.
(1)求b的值;
(2)在y轴上有一动点P(0,m),过点P作垂直y轴的直线交抛物线于点A(x1,y1),B(x2 ,y2),其中 .
①当时,结合函数图象,求出m的值;
②把直线PB下方的函数图象,沿直线PB向上翻折,图象的其余部分保持不变,得到一个新的图象W,新图象W在0≤x≤5 时,,求m的取值范围.
2.(18延庆一模26)在平面直角坐标系xOy中,抛物线y=ax2-4ax+3a(a>0)与x轴交于A,B两点(A在B的左侧).
(1)求抛物线的对称轴及点A,B的坐标;
(2)点C(t,3)是抛物线上一点,(点C在对称轴的右侧),过点C作x轴的垂线,垂足为点D.
①当时,求此时抛物线的表达式;
②当时,求t的取值范围.
3. (18石景山一模26)在平面直角坐标系中,将抛物线()向右平移个单位长度后得到抛物线,点是抛物线的顶点.
(1)直接写出点的坐标;
(2)过点且平行于x轴的直线l与抛物线交于,两点.
①当时,求抛物线的表达式;
②若,直接写出m的取值范围.
4.(18房山一模26)抛物线分别交x轴于点A(-1,0),C(3,0),交y轴于点B,抛物线的对称轴与x轴相交于点D. 点P为线段OB上的点,点E为线段AB上的点,且PE⊥AB.
(1)求抛物线的表达式;
(2)计算的值;
(3)请直接写出的最小值为 .
5. (18西城一模26)在平面直角坐标系中,抛物线:与轴交于点,抛物线的顶点为,直线:.
(1)当时,画出直线和抛物线,并直接写出直线被抛物线截得的线段长.
(2)随着取值的变化,判断点,是否都在直线上并说明理由.
(3)若直线被抛物线截得的线段长不小于,结合函数的图象,直接写出的取值范围.
6.(18朝阳毕业26)抛物线的对称轴为直线x=1,该抛物线与轴的两个交点分别为A和B,与 y轴的交点为C ,其中A(1,0).
(1)写出B点的坐标 ;
(2)若抛物线上存在一点P,使得△POC的面积是△BOC的面积的2倍,求点P的坐标;
(3)点M是线段BC上一点,过点M作轴的垂线交抛物线于点D,求线段MD长度的最大值.
7.(18怀柔一模26)在平面直角坐标系xOy中,抛物线y=nx2-4nx+4n-1(n≠0),与x轴交于点C,D(点C在点D的左侧),与y轴交于点A.
(1)求抛物线顶点M的坐标;
(2)若点A的坐标为(0,3),AB∥x轴,交抛物线于点B,求点B的坐标;
(3)在(2)的条件下,将抛物线在B,C两点之间的部分沿y轴翻折,翻折后的图象记为G,若直线与图象G有一个交点,结合函数的图象,求m的取值范围.
8.(18海淀一模26)在平面直角坐标系xOy中,已知抛物线的顶点在 x轴上,,()是此抛物线上的两点.
(1)若,
①当时,求,的值;
②将抛物线沿轴平移,使得它与轴的两个交点间的距离为4,试描述出这一变化过程;
(2)若存在实数,使得,且成立,则的取值范围是 .
9.(18朝阳一模26)在平面直角坐标系xOy中,抛物线与y轴交于点A,其对称轴与x轴交于点B.
(1)求点A,B的坐标;
(2)若方程有两个不相等的实数根,且两根都在1,3之间(包括1,3),结合函数的图象,求a的取值范围.
10.(18东城一模26)在平面直角坐标系xOy中,抛物线与x轴交于A,B两点(点A在点B左侧).
(1)当抛物线过原点时,求实数a的值;
(2)①求抛物线的对称轴;
②求抛物线的顶点的纵坐标(用含的代数式表示);
(3)当AB≤4时,求实数a的取值范围.
11.(18丰台一模26)在平面直角坐标系xOy中,抛物线的最高点的纵坐标是2.
(1)求抛物线的对称轴及抛物线的表达式;
(2)将抛物线在1≤x≤4之间的部分记为图象G1,将图象G1沿直线x = 1翻折,翻折后的图象记为G2,图象G1和G2组成图象G.过(0,b)作与y轴垂直的直线l,当直线l和图象G只有两个公共点时,将这两个公共点分别记为P1(x1,y1),P2(x2,y2),求b的取值范围和x1 + x2的值.
12.(18门头沟一模26)有一个二次函数满足以下条件:
①函数图象与x轴的交点坐标分别为, (点B在点A的右侧);
②对称轴是;
③该函数有最小值是-2.
(1)请根据以上信息求出二次函数表达式;
(2)将该函数图象的部分图象向下翻折与原图象未翻折的部分组成图象“G”,平行于x轴的直线与图象“G”相交于点、、(),结合画出的函数图象求的取值范围.
13.(18大兴一模26)在平面直角坐标系xOy中,抛物线,与y轴交于点C,与x轴交于点A,B,且.
(1)求的值;
(2)当m=时,将此抛物线沿对称轴向上平移n个单位,使平移后得到的抛物线顶点落在△ABC的内部(不包括△ABC的边),求n的取值范围(直接写出答案即可).
14.(18顺义一模26)在平面直角坐标系中,若抛物线顶点A的横坐标是-1,且与y轴交于点B(0,-1),点P为抛物线上一点.
(1)求抛物线的表达式;
(2)若将抛物线向下平移4个单位,点P平移后的对应点为Q.如果OP=OQ,求点Q的坐标.
15.(18通州一模26)在平面直角坐标系中,点C是二次函数的图象的顶点,一次函数的图象与轴、轴分别交于点,.
(1)请你求出点A,B,C的坐标;
(2)若二次函数与线段恰有一个公共点,求的取值范围.
类型5:一次函数、反比例函数
(1)反比例、一次函数基础
1.(18石景山一模9)对于函数,若,则 (填“>”或“<”).
2.(18朝阳毕业7)如图,在平面直角坐标系xOy中,反比例函数的图象经过点T. 下列各点,,,中,在该函数图象上的点有
A.4个 B.3个
C.2个 D.1个
3.(18西城一模14)在平面直角坐标系中,如果当时,函数()图象上的点都
展开阅读全文