1、可化为一元一次方程的分式方程教材内容16.3可化为一元一次方程的分式方程(2)上课时间 月 日 第 节教 具多媒体课 型新授课复习课,习题课,验收课教学目标知 识 与 技 能1、进一步熟练地解可化为一元一次方程的分式方程。2、通过分式方程的应用教学,培养学生数学应用意识。过 程 与 方 法使学生领会“ 转化”的思想方法,认识到解分式方程的关键在于将它转化为整式方程来解.情感态度价值观培养学生自主探究的意识,提高学生观察能力和分析能力。教学重点让学生学习审明题意设未知数,列分式方程.教学难点在不同的实际问题中,设元列分式方程教学内容与过程教法学法设计一、课前准备(预习教材,找出疑惑之处)问题情境
2、导入1复习练习解下列方程:(1) (2)2、列方程解应用题的一般步骤?概括这些解题方法与步骤,对于学习分式方程应用题也适用。这节课,我们将学习列分式方程解应用题。二、新课导学 例1某校招生录取时,为了防止数据输入出错,2640名学生的成绩数据分别由两位程序操作员各向计算机输入一遍,然后让计算机比较两人的输入是否一致.已知甲的输入速度是乙的2倍,结果甲比乙少用2小时输完.问这两个操作员每分钟各能输入多少名学生的成绩?分析(1)如何设元(2)题目中有几个相等关系?(3)怎样列方程解设乙每分钟能输入x名学生的成绩,则甲每分能输入2x名学生的成绩,根据题意得.解得x11.经检验,x11是原方程的解.并
3、且x11,2x21122,符合题意.答:甲每分钟能输入22名学生的成绩,乙每分钟能输入11名学生的成绩.本题有两个相等关系:(1)甲速=2乙速(2)甲时+120=乙时其中(1)用来设,(2)用来列方程概括列分式方程解应用题的一般步骤:(1)审清题意;(2)设未知数(要有单位);(3)根据题目中的数量关系列出式子,找出相等关系,列出方程;(4)解方程,并验根,还要看方程的解是否符合题意;(5)写出答案(要有单位)。练习:求解本章导图中的问题.实践与探索2: A,B两地相距135千米,两辆汽车从A开往B,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟,已知小汽车与大汽车的速度之比为5:2,
4、求两车的速度。解析:设大车的速度为2x千米/时,小车的速度为5x千米/时,根据题意得解之得x=9经检验x=9是原方程的解当x=9时,2x=18,5x=45答:大车的速度为18千米/时,小车的速度为45千米/时练习:(1)甲乙两人同时从 地出发,骑自行车到 地,已知 两地的距离为 ,甲每小时比乙多走 ,并且比乙先到40分钟设乙每小时走 ,则可列方程为( )A;B;C;D (2)我军某部由驻地到距离30千米的地方去执行任务,由于情况发生了变化,急行军速度必需是原计划的1.5倍,才能按要求提前2小时到达,求急行军的速度。读题、审题、设元、找相等关系列方程1. 下列各式中,是分式方程的是( )A.x+
5、y=5 B. C. D.=02.方程1+=0有增根,则增根是( )A.1 B.1 C.1 D.03. 沿河两地相距s千米,船在静水中的速度为a千米/时,水流速度为b千米/时,此船一次往返所需时间为( )A.小时 B.小时 C.()小时 D.()小时4.甲、乙两人每时共能做35个电器零件,当甲做了90个零件时,乙做了120个,问甲、乙每时各做多少个电器零件? 三、总结提升列分式方程解应用题的一般步骤:(1)审清题意;(2)设未知数(要有单位);(3)根据题目中的数量关系列出式子,找出相等关系,列出方程;(4)解方程,并验根,还要看方程的解是否符合题意;(5)写出答案(要有单位).四、课后作业:16页2、3题让学生通过自主探究,发现问题并学会分析解决问题。鼓励学生自主总结归纳知识,加强理解并帮助记忆.通过例题讲解和纠错,加深学生对知识的理解,使学生灵活应用.强调:既要检验所求的解是否是原分式方程的解,还要检验是否符合题意;读题、审题、设元、找相等关系列方程。通过练习巩固知识,提高难度,使学生学会应用并得到发展.教学反思