收藏 分销(赏)

九年级数学下册 第三十章 二次函数 30.4 二次函数的应用 第2课时 实际问题中二次函数的最值问题教学设计 (新版)冀教版-(新版)冀教版初中九年级下册数学教案.doc

上传人:s4****5z 文档编号:7606771 上传时间:2025-01-10 格式:DOC 页数:4 大小:42KB
下载 相关 举报
九年级数学下册 第三十章 二次函数 30.4 二次函数的应用 第2课时 实际问题中二次函数的最值问题教学设计 (新版)冀教版-(新版)冀教版初中九年级下册数学教案.doc_第1页
第1页 / 共4页
九年级数学下册 第三十章 二次函数 30.4 二次函数的应用 第2课时 实际问题中二次函数的最值问题教学设计 (新版)冀教版-(新版)冀教版初中九年级下册数学教案.doc_第2页
第2页 / 共4页
九年级数学下册 第三十章 二次函数 30.4 二次函数的应用 第2课时 实际问题中二次函数的最值问题教学设计 (新版)冀教版-(新版)冀教版初中九年级下册数学教案.doc_第3页
第3页 / 共4页
九年级数学下册 第三十章 二次函数 30.4 二次函数的应用 第2课时 实际问题中二次函数的最值问题教学设计 (新版)冀教版-(新版)冀教版初中九年级下册数学教案.doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、实际问题中二次函数的最值问题学习目标1经历数学建模的基本过程,能分析实际问题中变量之间的二次函数关系2会运用二次函数求实际问题中的最大值或最小值3能应用二次函数的性质解决图形最大面积、利润最大问题教学过程一、情境导入孙大爷要围成一个矩形花圃花圃的一边利用足够长的墙,另三边用总长为32米的篱笆恰好围成围成的花圃是如图所示的矩形ABCD.设AB边的长为x米,矩形ABCD的面积为S平方米当x为何值时,S有最大值?并求出最大值二、合作探究探究点一:最大面积问题【类型一】利用二次函数求最大面积 小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化(

2、1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)当x是多少时,矩形场地面积S最大?最大面积是多少?解析:利用矩形面积公式就可确定二次函数(1)矩形一边长为x,则另一边长为,从而表示出面积;(2)利用配方法求出顶点坐标解:(1)根据题意,得Sxx230x.自变量x的取值范围是0x30.(2)Sx230x(x15)2225,a10,S有最大值,即当x15(米)时,S最大值225平方米方法总结:二次函数与日常生活的例子还有很多,体现了二次函数这一数学模型应用的广泛性解决这类问题关键是在不同背景下学会从所给信息中提取有效信息,建立实际问题中变量间的二次函数关系【类型二】最大面积方案设计

3、施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米现以O点为原点,OM所在直线为x轴建立直角坐标系(如图所示)(1)直接写出点M及抛物线顶点P的坐标;(2)求出这条抛物线的函数关系式;(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB,使A.D点在抛物线上,B.C点在地面OM上为了筹备材料,需求出“脚手架”三根木杆AB.AD.DC的长度之和的最大值是多少,请你帮施工队计算一下解:(1)M(12,0),P(6,6)(2)设这条抛物线的函数关系式为ya(x6)26,因为抛物线过O(0,0),所以a(06)260,解得,a,所以这条抛物线的函数关系式为:y(x6)26,即

4、yx22x.(3)设OBm米,则点A的坐标为(m,m22m),所以ABDCm22m.根据抛物线的轴对称,可得OBCMm,所以BC122m,即AD122m,所以lABADDCm22m122mm22mm22m12(m3)215.所以当m3,即OB3米时,三根木杆长度之和l的最大值为15米探究点二:最大利润问题【类型一】利用解析式确定获利最大的条件 为了推进知识和技术创新、节能降耗,使我国的经济能够保持可持续发展某工厂经过技术攻关后,产品质量不断提高,该产品按质量分为10个档次,生产第一档次(即最低档)的新产品一天生产76件,每件利润10元,每提高一个档次,每件可节约能源消耗2元,但一天产量减少4件

5、生产该产品的档次越高,每件产品节约的能源就越多,是否获得的利润就越大?请你为该工厂的生产提出建议解析:在这个工业生产的实际问题中,随着生产产品档次的变化,所获利润也在不断的变化,于是可建立函数模型;找出题中的数量关系:一天的总利润一天生产的产品件数每件产品的利润;其中,“每件可节约能源消耗2元”的意思是利润增加2元;利用二次函数确定最大利润,再据此提出自己认为合理的建议解:设该厂生产第x档的产品一天的总利润为y元,则有y102(x1)764(x1)8x2128x6408(x8)21152.当x8时,y最大值1152.由此可见,并不是生产该产品的档次越高,获得的利润就越大建议:若想获得最大利润,

6、应生产第8档次的产品(其他建议,只要合理即可)【类型二】利用图象解析式确定最大利润 某水果店销售某种水果,由历年市场行情可知,从第1月至第12月,这种水果每千克售价y1(元)与销售时间第x月之间存在如图所示(一条线段)的变化趋势,每千克成本y2(元)与销售时间第x月满足函数关系式y2mx28mxn,其变化趋势如图所示(1)求y2的解析式;(2)第几月销售这种水果,每千克所获得利润最大?最大利润是多少?解:(1)由题意可得,函数y2的图象经过两点(3,6),(7,7),解得y2的解析式为y2x2x(1x12)(2)设y1kxb,函数y1的图象过两点(4,11),(8,10),解得y1的解析式为y1x12(1x12)设这种水果每千克所获得的利润为w元则wy1y2(x12)(x2x)x2x,w(x3)2(1x12),当x3时,w取最大值,第3月销售这种水果,每千克所获的利润最大,最大利润是元/千克板书设计实际问题中二次函数的最值问题:(1)几何图形最大面积问题;(2)商品利润最大问题.教学反思教学过程中,强调学生自主探索和合作交流,引导学生设计有助于学生设计表格,经历计算、观察、分析、比较的过程,直观地看出变化情况,培养学生将实际问题转化为函数问题并利用函数的性质进行决策的能力.

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服