收藏 分销(赏)

平行四边形复习-(5).doc

上传人:仙人****88 文档编号:7603403 上传时间:2025-01-10 格式:DOC 页数:4 大小:53KB
下载 相关 举报
平行四边形复习-(5).doc_第1页
第1页 / 共4页
平行四边形复习-(5).doc_第2页
第2页 / 共4页
点击查看更多>>
资源描述
第18章 《平行四边形》复习 绥芬河市第三中学 吴玲玲 【教学目标】 1、通过对几种平行四边形的回顾与思考,使学生梳理所学的知识,系统地复习平行四边形与各种特殊平行四边形的定义、性质、判定方法,三角形的中位线定理等; 2、正确理解平行四边形与各种特殊平行四边形的联系与区别,在反思和交流过程中,逐渐建立知识体系; 3、引导学生独立思考,通过归纳、概括、实践等系统数学活动,感受获得成功的体验,形成科学的学习习惯。 【教学重点】 1、平行四边形与各种特殊平行四边形的区别。 2、梳理平行四边形、矩形、菱形、正方形、三角形的中位线定理的知识体系及应用方法。 【教学难点】 平行四边形与各种特殊平行四边形的定义、性质、判定的综合运用。 【教学模式】 以题代纲,梳理知识-----变式训练,查漏补缺-----综合训练,总结规律-----测试练习,提高效率。 【教具准备】三角板、实物投影仪、电脑、自制课件。 【教学过程】 一、以题代纲,梳理知识 (一)开门见山,直奔主题 同学们,今天我们一起来复习《平行四边形》的相关知识,先请同学们迅速地完成下面几道练习题,请看大屏幕。 (二)诊断练习 1、根据条件判定它是什么图形,并在括号内填出,在四边形ABCD中,对角线AC和BD相交于点O: (1)AB=CD,AD=BC (平行四边形) (2)∠A=∠B=∠C=90° ( 矩形 ) (3)AB=BC,四边形ABCD是平行四边形 ( 菱形 ) (4)OA=OC=OB=OD ,AC⊥BD ( 正方形 ) (5)AB=CD, ∠A=∠C ( ? ) 2、菱形的两条对角线长分别是6厘米和8厘米,则菱形的边长为 5 厘米。 3、顺次连结矩形ABCD各边中点所成的四边形是 菱形 。 4、若正方形ABCD的对角线长10厘米,那么它的面积是 50 平方厘米。 5、平行四边形、矩形、菱形、正方形中,轴对称图形有: 矩形、菱形、正方形 ,中心对称图形的有: 平行四边形、矩形、菱形、正方形 ,既是轴对称图形,又是中心对称图形的是: 矩形、菱形、正方形 。 (三)归纳整理,形成体系 1、性质判定,列表归纳 平行四边形 矩形 菱形 正方形 性 质 边 对边平行且相等 对边平行且相等 对边平行,四边相等 对边平行,四边相等 角 对角相等 四个角都是直角 对角相等 四个角都是直角 对角线 互相平分 互相平分且相等 互相垂直平分,且每条对角线平分一组对角 互相垂直平分且相等,每条对角线平分一组对角 判定 1、两组对边分别平行; 2、两组对边分别相等; 3、一组对边平行且相等; 4、两组对角分别相等; 5、两条对角线互相平分. 1、有三个角是直角的四边形; 2、有一个角是直角的平行四边形; 3、对角线相等的平行四边形. 1、四边相等的四边形; 2、对角线互相垂直的平行四边形; 3、有一组邻边相等的平行四边形。 4、每条对角线平分一组对角的四边形。 1、有一个角是直角的菱形; 2、对角线相等的菱形; 3、有一组邻边相等的矩形; 4、对角线互相垂直的矩形; 对称性 只是中心对称图形 既是轴对称图形,又是中心对称图形 面积 S= ah S=ab S= S= a2 2、基础练习: (1)矩形、菱形、正方形都具有的性质是(  C  )    A.对角线相等 (距、正)  B. 对角线平分一组对角 (菱、正)    C.对角线互相平分    D. 对角线互相垂直 (菱、正) (2)正方形具有,矩形也具有的性质是(  A  )   A.对角线相等且互相平分   B. 对角线相等且互相垂直   C. 对角线互相垂直且互相平分  D.对角线互相垂直平分且相等 (3)如果一个四边形是中心对称图形,那么这个四边形一定( D  )   A.正方形   B.菱形   C.矩形  D.平行四边形 都是中心对称图形,A、B、C都是平行四边形 (4)矩形具有,而菱形不一定具有的性质是(  B  )   A. 对角线互相平分    B. 对角线相等   C. 对边平行且相等   D. 内角和为3600 问:菱形的对角线一定不相等吗?错,因为正方形也是菱形。 (5)正方形具有而矩形不具有的特征是(  D  )   A. 内角为3600  B. 四个角都是直角   C. 两组对边分别相等 D. 对角线平分对角 问:那么正方形具有而菱形不具有的特征是什么?对角线相等 3、集合表示,突出关系 正方形 平行四边形 矩形 菱形 (四)课堂小结,领悟思想方法 1.一题多变,举一反三。 经常在解题之后进行反思——改变命题的条件,或将命题的结论延伸,或将条件和结论互换,往往会有意想不到的收获。也只有这样,才能做到举一反三,提高应变能力。 2.一题多解,触类旁通。 在平时的作业或练习中,通过一题多解,你不仅可以从中对比选出最优方法,提高自己在应考中的解题效率,而且还能开阔你的思维,达到触类旁通的目的。 3.善于总结,领悟方法。 数学题目本身蕴含着许多数学思想方法,只要你善于总结,就能真正掌握、提炼出其中的数学方法,才能不断提高自己分析问题、解决问题的能力。 4 / 4
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 小学其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服