1、2006级车辆工程课程设计说明书第一章 驱动桥结构方案分析由于要求设计的是货车的后驱动桥,一般选用非断开式结构以与非独立悬架相适应,该种形式的驱动桥的桥壳是一根支撑在左右驱动车轮的刚性空心梁,一般是铸造或钢板冲压而成,主减速器,差速器和半轴等所有传动件都装在其中,此时驱动桥,驱动车轮都属于簧下质量。驱动桥的结构形式有多种,基本形式有三种如下:1)中央单级减速驱动桥。此是驱动桥结构中最为简单的一种,是驱动桥的基本形式, 在载重汽车中占主导地位。一般在主传动比小于6的情况下,应尽量采用中央单级减速驱动桥。目前的中央单级减速器趋于采用双曲线螺旋伞齿轮,主动小齿轮采用骑马式支承, 有差速锁装置供选用。
2、2)中央双级驱动桥。在国内目前的市场上,中央双级驱动桥主要有2种类型:一类如伊顿系列产品,事先就在单级减速器中预留好空间,当要求增大牵引力与速比时,可装入圆柱行星齿轮减速机构,将原中央单级改成中央双级驱动桥,这种改制“三化”(即系列化,通用化,标准化)程度高, 桥壳、主减速器等均可通用,锥齿轮直径不变;另一类如洛克威尔系列产品,当要增大牵引力与速比时,需要改制第一级伞齿轮后,再装入第二级圆柱直齿轮或斜齿轮,变成要求的中央双级驱动桥,这时桥壳可通用,主减速器不通用, 锥齿轮有2个规格。由于上述中央双级减速桥均是在中央单级桥的速比超出一定数值或牵引总质量较大时,作为系列产品而派生出来的一种型号,它
3、们很难变型为前驱动桥,使用受到一定限制;因此,综合来说,双级减速桥一般均不作为一种基本型驱动桥来发展,而是作为某一特殊考虑而派生出来的驱动桥存在。3)中央单级、轮边减速驱动桥。轮边减速驱动桥较为广泛地用于油田、建筑工地、矿山等非公路车与军用车上。当前轮边减速桥可分为2类:一类为圆锥行星齿轮式轮边减速桥;另一类为圆柱行星齿轮式轮边减速驱动桥。圆锥行星齿轮式轮边减速桥。由圆锥行星齿轮式传动构成的轮边减速器,轮边减速比为固定值2,它一般均与中央单级桥组成为一系列。在该系列中,中央单级桥仍具有独立性,可单独使用,需要增大桥的输出转矩,使牵引力增大或速比增大时,可不改变中央主减速器而在两轴端加上圆锥行星
4、齿轮式减速器即可变成双级桥。这类桥与中央双级减速桥的区别在于:降低半轴传递的转矩,把增大的转矩直接增加到两轴端的轮边减速器上 ,其“三化”程度较高。但这类桥因轮边减速比为固定值2,因此,中央主减速器的尺寸仍较大,一般用于公路、非公路军用车。圆柱行星齿轮式轮边减速桥。单排、齿圈固定式圆柱行星齿轮减速桥,一般减速比在3至4.2之间。由于轮边减速比大,因此,中央主减速器的速比一般均小于3,这样大锥齿轮就可取较小的直径,以保证货车对离地问隙的要求。这类桥比单级减速器的质量大,价格也要贵些,而且轮穀内具有齿轮传动,长时间在公路上行驶会产生大量的热量而引起过热;因此,作为公路车用驱动桥,它不如中央单级减速
5、桥。况且由于随着我国公路条件的改善和物流业对车辆性能要求的变化,货车驱动桥技术已呈现出向单级化发展的趋势,主要是单级驱动桥还有以下几点优点:(1) 单级减速驱动桥是驱动桥中结构最简单的一种,制造工艺简单,成本较低, 是驱动桥的基本类型,在货车上占有重要地位;(2) 货车发动机向低速大转矩发展的趋势,使得驱动桥的传动比向小速比发展;(3) 随着公路状况的改善,特别是高速公路的迅猛发展,货车使用条件对汽车通过性的要求降低。因此,货车不必像过去一样,采用复杂的结构提高通过性;单级桥产品的优势为单级桥的发展拓展了广阔的前景。从产品设计的角度看, 重型车产品在主减速比小于6的情况下,应尽量选用单级减速驱
6、动桥。所以此设计采用单级驱动桥再配以铸造整体式桥壳。图1-1Meritor单后驱动桥为中国重汽引进的美国ROCKWELL公司13吨级单级减速桥的外形图。图1-1 Meritor(美驰)单后驱动桥第二章 主减速器设计2.1 主减速器的结构形式主减速器的结构形式主要是根据其齿轮的类型,主动齿轮和从动齿轮的安置方法以及减速形式的不同而异。2.1.1 主减速器的齿轮类型因螺旋锥齿轮能承受较大的负荷,加之其轮齿不是在齿的全长上同时啮合,而是逐渐地由齿的一端连续而平稳地转向另一端,因此其工作平稳,即使在高速运转时,噪声和振动也很小。主减速器的齿轮选用螺旋锥齿轮传动形式。2.1.2 主减速器的减速形式由于i
7、=5.8336,一般采用单级主减速器,单级减速驱动桥产品的优势:单级减速驱动车桥是驱动桥中结构最简单的一种,制造工艺较简单,成本较低,是驱动桥的基本型,在货车上占有重要地位;目前货车发动机向低速大扭矩发展的趋势使得驱动桥的传动比向小速比发展;随着公路状况的改善,特别是高速公路的迅猛发展,许多货车使用条件对汽车通过性的要求降低,因此,货车产品不必像过去一样,采用复杂的结构提高其的通过性;与带轮边减速器的驱动桥相比,由于产品结构简化,单级减速驱动桥机械传动效率提高,易损件减少,可靠性增加。2.1.3 主减速器主,从动锥齿轮的支承形式1)主动锥齿轮的支承跨置式支承的支承刚度高于悬臂式。,由于齿轮大端
8、一侧轴颈上的两个圆锥滚子轴承之间的距离很小,可以缩短主动锥齿轮轴的长度,使布置更紧凑,并可减小传动轴夹角,有利于整车布置,所以选用跨置式。2) 从动锥齿轮的支承为了使从动锥齿轮背面的支承凸缘有足够的位置设置加强筋及增强支承的稳定性,从动锥齿轮采用圆锥滚子轴承支承。 2.2 主减速器的基本参数选择与设计计算2.2.1 主减速器计算载荷的确定1. 按发动机最大转矩和最低挡传动比确定从动锥齿轮的计算转矩ce (2-1) 式中:发动机至所计算的主减速器从动锥齿轮之间的传动系的最低挡传动比,在此取7.31*5.833=42.639;发动机的输出的最大转矩,在此取300;传动系上传动部分的传动效率,在此取
9、0.9;该汽车的驱动桥数目在此取1;由于猛结合离合器而产生冲击载荷时的超载系数,对于一般的载货汽车,矿用汽车和越野汽车以及液力传动及自动变速器的各类汽车取=1.0,当性能系数0时可取=2.0; (2-2)汽车满载时的总质量在此取5500kg ;所以 0.195 =35.7516 =0,即=1.0由以上各参数可求=11512.52. 按驱动轮打滑转矩确定从动锥齿轮的计算转矩 (2-3) 式中:汽车满载时一个驱动桥给水平地面的最大负荷,在此取30000N;轮胎对地面的附着系数,对于安装一般轮胎的公路用车,取=0.85;车轮的滚动半径,在此取0.483m;,分别为所计算的主减速器从动锥齿轮到驱动车轮
10、之间的传动效率和传动比,取0.9,由于没有轮边减速器取1.0所以=136853. 按汽车日常行驶平均转矩确定从动锥齿轮的计算转矩对于公路车辆来说,使用条件较非公路车辆稳定,其正常持续的转矩根据所谓的平均牵引力的值来确定: (2- 4)式中:汽车满载时的总重量,在此取55000N;所牵引的挂车满载时总重量,N,但仅用于牵引车的计算;道路滚动阻力系数,对于载货汽车可取0.0150.020;在此取0.018;汽车正常行驶时的平均爬坡能力系数,对于载货汽车可取0.050.09在此取0.07;汽车的性能系数在此取0;,n见式(2-1),(2-3)下的说明。所以 =2597.5式(2-1)式(2-4)参考
11、汽车设计实用手册1式(4-6-12)式(4-6-14)。2.2.2 主减速器基本参数的选择主减速器锥齿轮的主要参数有主、从动齿轮的齿数和,从动锥齿轮大端分度圆直径、端面模数、主从动锥齿轮齿面宽和、中点螺旋角、法向压力角等。1.主、从动锥齿轮齿数和选择主、从动锥齿轮齿数时应考虑如下因素:1)为了磨合均匀,之间应避免有公约数。2)为了得到理想的齿面重合度和高的轮齿弯曲强度,主、从动齿轮齿数和应不小于40。3)为了啮合平稳,噪声小和具有高的疲劳强度对于商用车一般不小于6。4)主传动比较大时,尽量取得小一些,以便得到满意的离地间隙。5)对于不同的主传动比,和应有适宜的搭配。根据以上要求参考汽车设计实用
12、手册1中表4-6-12 取=6,=35,+=4140.2.从动锥齿轮大端分度圆直径和端面模数对于单级主减速器,增大尺寸会影响驱动桥壳的离地间隙,减小又会影响跨置式主动齿轮的前支承座的安装空间和差速器的安装。可根据经验公式初选,即 (2-5)直径系数,一般取13.016.0 从动锥齿轮的计算转矩,为Tce和Tcs中的较小者所以 =(13.016.0)=(293.5361.3)初选=315 则=/=315/35=9根据=来校核=9的选取是否合适,其中=(0.30.4)此处,=(0.30.4)=(6.779.03),因此满足校核。3. 主,从动锥齿轮齿面宽和锥齿轮齿面过宽并不能增大齿轮的强度和寿命,
13、反而会导致因锥齿轮轮齿小端齿沟变窄引起的切削刀头顶面过窄及刀尖圆角过小,这样不但会减小了齿根圆角半径,加大了集中应力,还降低了刀具的使用寿命。此外,安装时有位置偏差或由于制造、热处理变形等原因使齿轮工作时载荷集中于轮齿小端,会引起轮齿小端过早损坏和疲劳损伤。另外,齿面过宽也会引起装配空间减小。但齿面过窄,轮齿表面的耐磨性和轮齿的强度会降低。对于从动锥齿轮齿面宽,推荐不大于节锥的0.3倍,即,而且应满足,对于汽车主减速器圆弧齿轮推荐采用: =0.155315=48.825 在此取50一般习惯使锥齿轮的小齿轮齿面宽比大齿轮稍大,使其在大齿轮齿面两端都超出一些,通常小齿轮的齿面加大10%较为合适,在
14、此取=554.中点螺旋角 螺旋角沿齿宽是变化的,轮齿大端的螺旋角最大,轮齿小端螺旋角最小,弧齿锥齿轮副的中点螺旋角是相等的,选时应考虑它对齿面重合度,轮齿强度和轴向力大小的影响,越大,则也越大,同时啮合的齿越多,传动越平稳,噪声越低,而且轮齿的强度越高,应不小于1.25,在1.52.0时效果最好,但过大,会导致轴向力增大。汽车主减速器弧齿锥齿轮的平均螺旋角为3540,而商用车选用较小的值以防止轴向力过大,通常取35。5. 螺旋方向 主、从动锥齿轮的螺旋方向是相反的。螺旋方向与锥齿轮的旋转方向影响其所受的轴向力的方向,当变速器挂前进挡时,应使主动锥齿轮的轴向力离开锥顶方向,这样可使主、从动齿轮有
15、分离的趋势,防止轮齿因卡死而损坏。所以主动锥齿轮选择为左旋,从锥顶看为顺时针运动,这样从动锥齿轮为右旋,从锥顶看为逆时针,驱动汽车前进。6. 法向压力角加大压力角可以提高齿轮的强度,减少齿轮不产生根切的最小齿数,但对于尺寸小的齿轮,大压力角易使齿顶变尖及刀尖宽度过小,并使齿轮的端面重叠系数下降,一般对于“格里森”制主减速器螺旋锥齿轮来说,规定载货汽车可选用20的压力角。2.2.3 主减速器圆弧锥齿轮的几何尺寸计算表2-1 主减速器圆弧锥齿轮的几何尺寸计算用表序 号项 目计 算 公 式计 算 结 果1主动齿轮齿数62从动齿轮齿数353端面模数9mm4齿面宽=55mm =50mm5齿工作高=13.
16、5mm6齿全高=15.0mm7法向压力角=208轴交角=909节圆直径=54mm=315mm10节锥角arctan=90-=14=7611节锥距A=A=159.79mm12周节t=3.1416 t=28.2744mm13齿顶高=11.565mm=1.935mm14齿根高=3.435mm=13.065mm15径向间隙c=1.5mm16齿根角=1.231=4.67417面锥角=14.402=81.50318根锥角=8.497=75.59819齿顶圆直径=76.797=315.6520节锥顶点止齿轮外缘距离=155.546=25.09321理论弧齿厚 =20.71mm=7.56mm22齿侧间隙B=0
17、.3050.4060.4mm23螺旋角=352.2.4 主减速器圆弧锥齿轮的强度计算在完成主减速器齿轮的几何计算之后,应对其强度进行计算,以保证其有足够的强度和寿命以及安全可靠性地工作。在进行强度计算之前应首先了解齿轮的破坏形式及其影响因素。1) 齿轮的损坏形式及寿命齿轮的损坏形式常见的有轮齿折断、齿面点蚀及剥落、齿面胶合、齿面磨损等。它们的主要特点及影响因素分述如下: (1)轮齿折断主要分为疲劳折断及由于弯曲强度不足而引起的过载折断。折断多数从齿根开始,因为齿根处齿轮的弯曲应力最大。 疲劳折断:在长时间较大的交变载荷作用下,齿轮根部经受交变的弯曲应力。如果最高应力点的应力超过材料的耐久极限,
18、则首先在齿根处产生初始的裂纹。随着载荷循环次数的增加,裂纹不断扩大,最后导致轮齿部分地或整个地断掉。在开始出现裂纹处和突然断掉前存在裂纹处,在载荷作用下由于裂纹断面间的相互摩擦,形成了一个光亮的端面区域,这是疲劳折断的特征,其余断面由于是突然形成的故为粗糙的新断面。 过载折断:由于设计不当或齿轮的材料及热处理不符合要求,或由于偶然性的峰值载荷的冲击,使载荷超过了齿轮弯曲强度所允许的范围,而引起轮齿的一次性突然折断。此外,由于装配的齿侧间隙调节不当、安装刚度不足、安装位置不对等原因,使轮齿表面接触区位置偏向一端,轮齿受到局部集中载荷时,往往会使一端(经常是大端)沿斜向产生齿端折断。各种形式的过载
19、折断的断面均为粗糙的新断面。为了防止轮齿折断,应使其具有足够的弯曲强度,并选择适当的模数、压力角、齿高及切向修正量、良好的齿轮材料及保证热处理质量等。齿根圆角尽可能加大,根部及齿面要光洁。 (2)齿面的点蚀及剥落齿面的疲劳点蚀及剥落是齿轮的主要破坏形式之一,约占损坏报废齿轮的70%以上。它主要由于表面接触强度不足而引起的。点蚀:是轮齿表面多次高压接触而引起的表面疲劳的结果。由于接触区产生很大的表面接触应力,常常在节点附近,特别在小齿轮节圆以下的齿根区域内开始,形成极小的齿面裂纹进而发展成浅凹坑,形成这种凹坑或麻点的现象就称为点蚀。一般首先产生在几个齿上。在齿轮继续工作时,则扩大凹坑的尺寸及数目
20、,甚至会逐渐使齿面成块剥落,引起噪音和较大的动载荷。在最后阶段轮齿迅速损坏或折断。减小齿面压力和提高润滑效果是提高抗点蚀的有效方法,为此可增大节圆直径及增大螺旋角,使齿面的曲率半径增大,减小其接触应力。在允许的范围内适当加大齿面宽也是一种办法。齿面剥落:发生在渗碳等表面淬硬的齿面上,形成沿齿面宽方向分布的较点蚀更深的凹坑。凹坑壁从齿表面陡直地陷下。造成齿面剥落的主要原因是表面层强度不够。例如渗碳齿轮表面层太薄、心部硬度不够等都会引起齿面剥落。当渗碳齿轮热处理不当使渗碳层中含碳浓度的梯度太陡时,则一部分渗碳层齿面形成的硬皮也将从齿轮心部剥落下来。(3)齿面胶合 在高压和高速滑摩引起的局部高温的共
21、同作用下,或润滑冷却不良、油膜破坏形成金属齿表面的直接摩擦时,因高温、高压而将金属粘结在一起后又撕下来所造成的表面损坏现象和擦伤现象称为胶合。它多出现在齿顶附近,在与节锥齿线的垂直方向产生撕裂或擦伤痕迹。轮齿的胶合强度是按齿面接触点的临界温度而定,减小胶合现象的方法是改善润滑条件等。 (4)齿面磨损这是轮齿齿面间相互滑动、研磨或划痕所造成的损坏现象。规定范围内的正常磨损是允许的。研磨磨损是由于齿轮传动中的剥落颗粒、装配中带入的杂物,如未清除的型砂、氧化皮等以及油中不洁物所造成的不正常磨损,应予避免。汽车主减速器及差速器齿轮在新车跑合期及长期使用中按规定里程更换规定的润滑油并进行清洗是防止不正常
22、磨损的有效方法。汽车驱动桥的齿轮,承受的是交变负荷,其主要损坏形式是疲劳。其表现是齿根疲劳折断和由表面点蚀引起的剥落。在要求使用寿命为20万千米或以上时,其循环次数均以超过材料的耐久疲劳次数。因此,驱动桥齿轮的许用弯曲应力不超过210.9Nmm.表2-2给出了汽车驱动桥齿轮的许用应力数值。 表2-2 汽车驱动桥齿轮的许用应力 Nmm计算载荷 主减速器齿轮的许用弯曲应力主减速器齿轮的许用接触应力差速器齿轮的许用弯曲应力按式(2-1)、式(2-3)计算出的最大计算转矩Tce,Tcs中的较小者7002800980按式(2-4)计算出的平均计算转矩Tcf210.91750210.9实践表明,主减速器齿
23、轮的疲劳寿命主要与最大持续载荷(即平均计算转矩)有关,而与汽车预期寿命期间出现的峰值载荷关系不大。汽车驱动桥的最大输出转矩Tec和最大附着转矩Tcs并不是使用中的持续载荷,强度计算时只能用它来验算最大应力,不能作为疲劳损坏的依据。2) 主减速器圆弧齿螺旋锥齿轮的强度计算 (1) 单位齿长上的圆周力在汽车主减速器齿轮的表面耐磨性,常常用其在轮齿上的假定单位压力即单位齿长圆周力来估算,即 Nmm (2-6) 式中:P作用在齿轮上的圆周力,按发动机最大转矩和最大附着力矩 两种载荷工况进行计算,N; 从动齿轮的齿面宽,在此取50mm. 按发动机最大转矩计算时: Nmm (2-7)式中:发动机输出的最大
24、转矩,在此取300;变速器的传动比,在此取7.31;主动齿轮节圆直径,在此取54mm.按上式 Nmm按最大附着力矩计算时: Nmm (2-8)式中:汽车满载时一个驱动桥给水平地面的最大负荷,对于后驱动桥还应考虑汽车最大加速时的负荷增加量,在此取30000N;轮胎与地面的附着系数,在此取0.85:轮胎的滚动半径,在此取0.483m按上式 Nmm在现代汽车的设计中,由于材质及加工工艺等制造质量的提高,单位齿长上的圆周力有时提高许用数据的20%25%。经验算以上两数据都在许用范围内。其中上述两种方法计算用的许用单位齿长上的圆周力p都为1786.25N/mm。(2)轮齿的弯曲强度计算 汽车主减速器锥齿
25、轮的齿根弯曲应力为 N/ (29) 式中:该齿轮的计算转矩,Nm;超载系数;在此取1.0尺寸系数,反映材料的不均匀性,与齿轮尺寸和热处理有关,当时,在此0.772载荷分配系数,当两个齿轮均用跨置式支承型式时,1.001.1; 当一个齿轮用跨置式支承型式取1.101.25。支承刚度大时取小值。质量系数,对于汽车驱动桥齿轮,当齿轮接触良好,周节及径向跳动精度高时,可取1.0;计算齿轮的齿面宽,mm;计算齿轮的齿数;端面模数,mm;计算弯曲应力的综合系数(或几何系数),它综合考虑了齿形系数。载荷作用点的位置、载荷在齿间的分布、有效齿面宽、应力集中系数及惯性系数等对弯曲应力计算的影响。计算弯曲应力时本
26、应采用轮齿中点圆周力与中点端面模数,今用大端模数,而在综合系数中进行修正。按汽车设计图9-62选取小齿轮的0.285,大齿轮0.235.按上式466.7N/ 700N/=560.1 N/3076.9 h=所以轴承符合使用要求。对于从动齿轮的轴承C,D的径向力计算公式见式(2-18)和式(2-19)已知F=25450N,=9662N,=20202N,a=410mm,b=160mm.c=250mm所以,轴承C的径向力:=10401.3N 轴承D的径向力:=23100.5N轴承C,D均采用7315E,其额定动载荷Cr为134097N(3)对于轴承C,轴向力A=9662N,径向力R=10401.3N,
27、并且=0.93e,在此e值为1.5tana约为0.402,由机械设计2中表18.7可查得X=0.4,Y=0.4cota=1.6所以Q=1.2(0.496621.610401.3)=24608.256N =28963 h所以轴承C满足使用要求。(4)对于轴承D,轴向力A=0N,径向力R=23100.5N,并且=.4187e 由机械设计2中表18.7可查得X=0.4,Y=0.4cota=1.6 所以Q=1.2(1.623100.5)=44352.96N=4064.8 h 所以轴承D满足使用要求。此节计算内容参考了汽车设计实用手册1和汽车设计3关于主减速器的有关计算。第三章 差速器设计汽车在行驶过程
28、中左,右车轮在同一时间内所滚过的路程往往不等。例如,转弯时内、外两侧车轮行程显然不同,即外侧车轮滚过的距离大于内侧的车轮;汽车在不平路面上行驶时,由于路面波形不同也会造成两侧车轮滚过的路程不等;即使在平直路面上行驶,由于轮胎气压、轮胎负荷、胎面磨损程度不同以及制造误差等因素的影响,也会引起左、右车轮因滚动半径的不同而使左、右车轮行程不等。如果驱动桥的左、右车轮刚性连接,则行驶时不可避免地会产生驱动轮在路面上的滑移或滑转。这不仅会加剧轮胎的磨损与功率和燃料的消耗,而且可能导致转向和操纵性能恶化。为了防止这些现象的发生,汽车左、右驱动轮间都装有轮间差速器,从而保证了驱动桥两侧车轮在行程不等时具有不
29、同的旋转角速度,满足了汽车行驶运动学要求。差速器用来在两输出轴间分配转矩,并保证两输出轴有可能以不同的角速度转动。差速器有多种形式,在此设计普通对称式圆锥行星齿轮差速器。3.1 对称式圆锥行星齿轮差速器的差速原理图3-1 差速器差速原理如图3-1所示,对称式锥齿轮差速器是一种行星齿轮机构。差速器壳3与行星齿轮轴5连成一体,形成行星架。因为它又与主减速器从动齿轮6固连在一起,固为主动件,设其角速度为;半轴齿轮1和2为从动件,其角速度为和。A、B两点分别为行星齿轮4与半轴齿轮1和2的啮合点。行星齿轮的中心点为C,A、B、C三点到差速器旋转轴线的距离均为。当行星齿轮只是随同行星架绕差速器旋转轴线公转
30、时,显然,处在同一半径上的A、B、C三点的圆周速度都相等(图3-1),其值为。于是=,即差速器不起差速作用,而半轴角速度等于差速器壳3的角速度。当行星齿轮4除公转外,还绕本身的轴5以角速度自转时(图),啮合点A的圆周速度为=+,啮合点B的圆周速度为=-。于是+=(+)+(-)即 + =2 (3-1)若角速度以每分钟转数表示,则 (3-2)式(3-2)为两半轴齿轮直径相等的对称式圆锥齿轮差速器的运动特征方程式,它表明左右两侧半轴齿轮的转速之和等于差速器壳转速的两倍,而与行星齿轮转速无关。因此在汽车转弯行驶或其它行驶情况下,都可以借行星齿轮以相应转速自转,使两侧驱动车轮以不同转速在地面上滚动而无滑
31、动。有式(3-2)还可以得知:当任何一侧半轴齿轮的转速为零时,另一侧半轴齿轮的转速为差速器壳转速的两倍;当差速器壳的转速为零(例如中央制动器制动传动轴时),若一侧半轴齿轮受其它外来力矩而转动,则另一侧半轴齿轮即以相同的转速反向转动。3.2 对称式圆锥行星齿轮差速器的结构普通的对称式圆锥齿轮差速器由差速器左右壳,两个半轴齿轮,四个行星齿轮,行星齿轮轴,半轴齿轮垫片及行星齿轮垫片等组成。如图3-2所示。由于其具有结构简单、工作平稳、制造方便、用于公路汽车上也很可靠等优点,故广泛用于各类车辆上。图3-2 普通的对称式圆锥行星齿轮差速器1,12-轴承;2-螺母;3,14-锁止垫片;4-差速器左壳;5,13-螺栓;6-半轴齿轮垫片;7-半轴齿轮;8-行星齿轮轴;9-行星齿轮;10-行星齿轮垫片;11-差速器右壳3.3 对称式圆锥行星齿轮差速器的设计由于在差速器壳上装着主减速器从动齿轮,所以在确定主减速器从动齿轮尺寸时,应考虑差速器的安装。差速器的轮廓尺寸也受到主减速器从动齿轮轴承支承座及主动齿轮导向轴承座的限制。3.3.1 差速器齿轮的基本参数的选择