1、11.2反比例函数图像与性质(3) 教学目标:1.会根据反比例函数图像的某些特征,分析并掌握反比例函数的性质2.能运用反比例函数图像与对应的函数关系或之间的内在联系及其几何意义解决有关问题3.根据所给反比例函数与一次函数的图像解决一些简单的综合问题教学重点:根据条件确定函数的类型,明确函数图像所在象限及有关性质教学难点:能结合函数图像及性质,比较函数值的大小和求函数关系式教学流程:一、 情境创设1.填表正比例函数y=kx反比例函数y=k0k0k0),当x1 0 x2 x3时,其对应的值y1、y2、y3的大小关系是 二、 探索活动活动1:.如图,是反比例函数y =的图像的一支(1) 函数图像的另
2、一支在第几象限?(2) 求常数m的取值范围(3) 点A(3,y1)、B(1,y2)、C(2,y3)都在这个反比例函数的图像上,比较y1、 y2和y3的大小活动2: 已知反比例函数(m0)的图像经过点A、B,点A的坐标为(1,3),点B到x轴的距离为1,点C坐标为(2,0).(1)求次反比例函数的关系式;(2)求直线BC的函数关系式三、 例题教学.已知反比例函数 y = 与一次函数y=mx+b的图像交于P(2,1)和Q(1,n)两点(1) 求k、n的值;(2) 求一次函数y=mx+b的解析式(3) 求POQ的面积四、 当堂练习 1.已知反比例函数y = 的图像具有以下特征:在同一象限内,y随x增大而增大,(1)求n的取值范围(2)点(2,a)、(-1,b)、(-2,c)都在这个反比例函数图像上,比较a、b、c的大小2.已知反比例函数y1 = 和一次函数y2=kx+2的图像都过点P(a,2a)(1) 求a与k的值;(2) 在同一坐标系中画出这两个函数的图像;(3) 若两函数图像的另一个交点是Q(0.5,4),利用图像指出:当x为何值时,有y1y2?五、 归纳总结1、你通过本节课的学习,你有哪些收获?2、 你还有哪些困惑需要大家帮助、3、你对本节课还有什么好的建议?教后反思: