1、23.1 图形的旋转(1)第一课时 教学内容 1什么叫旋转?旋转中心?旋转角? 2什么叫旋转的对应点? 教学目标 了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题 通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题 重难点、关键 1重点:旋转及对应点的有关概念及其应用 2难点与关键:从活生生的数学中抽出概念 教具、学具准备 小黑板、三角尺 教学过程 一、复习引入 (学生活动)请同学们完成下面各题1将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形2如图,已知ABC和直线L,请你画出ABC
2、关于L的对称图形ABC 3圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗? (口述)老师点评并总结: (1)平移的有关概念及性质 (2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它既有的一些性质 (3)什么叫轴对称图形? 二、探索新知 我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究 1请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度? (口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心如果从现在到下课时针转了_度,分针转了_度,秒针转了_度 2再看我
3、自制的好像风车风轮的玩具,它可以不停地转动如何转到新的位置?(老师点评略) 3第1、2两题有什么共同特点呢? 共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度 像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角 如果图形上的点P经过旋转变为点P,那么这两个点叫做这个旋转的对应点 下面我们来运用这些概念来解决一些问题 例1如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到OEF,在这个旋转过程中: (1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A、B分别移动到什么位置? 解:(
4、1)旋转中心是O,AOE、BOF等都是旋转角 (2)经过旋转,点A和点B分别移动到点E和点F的位置 例2(学生活动)如图,四边形ABCD、四边形EFGH都是边长为1的正方形 (1)这个图案可以看做是哪个“基本图案”通过旋转得到的? (2)请画出旋转中心和旋转角(3)指出,经过旋转,点A、B、C、D分别移到什么位置?(老师点评)(1)可以看做是由正方形ABCD的基本图案通过旋转而得到的(2)画图略(3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H 最后强调,这个旋转中心是固定的,即正方形对角线的交点,但旋转角和对应点都是不唯一的 三、巩固练习 教材P65 练习1、2、3 四、应用拓展
5、例3两个边长为1的正方形,如图所示,让一个正方形的顶点与另一个正方形中心重合,不难知道重合部分的面积为,现把其中一个正方形固定不动,另一个正方形绕其中心旋转,问在旋转过程中,两个正方形重叠部分面积是否发生变化?说明理由 分析:设任转一角度,如图中的虚线部分,要说明旋转后正方形重叠部分面积不变,只要说明SOEE=SODD,那么只要说明OEFODD 解:面积不变 理由:设任转一角度,如图所示 在RtODD和RtOEE中 ODD=OEE=90 DOD=EOE=90-BOE OD=OD ODDOEE SODD=SOEE S四边形OEBD=S正方形OEBD= 五、归纳小结(学生总结,老师点评) 本节课要
6、掌握: 1旋转及其旋转中心、旋转角的概念 2旋转的对应点及其它们的应用 六、布置作业 1教材P66 复习巩固1、2、32同步练习一、选择题1在26个英文大写字母中,通过旋转180后能与原字母重合的有( ) A6个 B7个 C8个 D9个2从5点15分到5点20分,分针旋转的度数为( ) A20 B26 C30 D363如图1,在RtABC中,ACB=90,A=40,以直角顶点C为旋转中心,将ABC旋转到ABC的位置,其中A、B分别是A、B的对应点,且点B在斜边AB上,直角边CA交AB于D,则旋转角等于( )A70 B80 C60 D50 (1) (2) (3)二、填空题1在平面内,将一个图形绕
7、一个定点沿着某个方向转动一个角度,这样的图形运动称为_,这个定点称为_,转动的角为_2如图2,ABC与ADE都是等腰直角三角形,C和AED都是直角,点E在AB上,如果ABC经旋转后能与ADE重合,那么旋转中心是点_;旋转的度数是_3如图3,ABC为等边三角形,D为ABC内一点,ABD经过旋转后到达ACP的位置,则,(1)旋转中心是_;(2)旋转角度是_;(3)ADP是_三角形三、综合提高题1阅读下面材料:如图4,把ABC沿直线BC平行移动线段BC的长度,可以变到ECD的位置如图5,以BC为轴把ABC翻折180,可以变到DBC的位置 (4) (5) (6) (7) 如图6,以A点为中心,把ABC旋转90,可以变到AED的位置,像这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置,不改变形状和大小的图形变换,叫做三角形的全等变换 回答下列问题 如图7,在正方形ABCD中,E是AD的中点,F是BA延长线上一点,AF=AB (1)在如图7所示,可以通过平行移动、翻折、旋转中的哪一种方法,使ABE移到ADF的位置?(2)指出如图7所示中的线段BE与DF之间的关系2一块等边三角形木块,边长为1,如图,现将木块沿水平线翻滚五个三角形,那么B点从开始至结束所走过的路径长是多少?