1、21.2解一元二次方程212.1配方法第1课时直接开平方法理解一元二次方程“降次”转化的数学思想,并能应用它解决一些具体问题提出问题,列出缺一次项的一元二次方程ax2c0,根据平方根的意义解出这个方程,然后知识迁移到解a(exf)2c0型的一元二次方程重点运用开平方法解形如(xm)2n(n0)的方程,领会降次转化的数学思想难点通过根据平方根的意义解形如x2n的方程,将知识迁移到根据平方根的意义解形如(xm)2n(n0)的方程一、复习引入学生活动:请同学们完成下列各题问题1:填空(1)x28x_(x_)2;(2)9x212x_(3x_)2;(3)x2px_(x_)2.解:根据完全平方公式可得:(
2、1)164;(2)42;(3)()2.问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?二、探索新知上面我们已经讲了x29,根据平方根的意义,直接开平方得x3,如果x换元为2t1,即(2t1)29,能否也用直接开平方的方法求解呢?(学生分组讨论)老师点评:回答是肯定的,把2t1变为上面的x,那么2t13即2t13,2t13方程的两根为t11,t22例1解方程:(1)x24x41(2)x26x92分析:(1)x24x4是一个完全平方公式,那么原方程就转化为(x2)21.(2)由已知,得:(x3)22直接
3、开平方,得:x3即x3,x3所以,方程的两根x13,x23解:略例2市政府计划2年内将人均住房面积由现在的10 m2提高到14.4 m2,求每年人均住房面积增长率分析:设每年人均住房面积增长率为x,一年后人均住房面积就应该是1010x10(1x);二年后人均住房面积就应该是10(1x)10(1x)x10(1x)2解:设每年人均住房面积增长率为x,则:10(1x)214.4(1x)21.44直接开平方,得1x1.2即1x1.2,1x1.2所以,方程的两根是x10.220%,x22.2因为每年人均住房面积的增长率应为正的,因此,x22.2应舍去所以,每年人均住房面积增长率应为20%.(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程我们把这种思想称为“降次转化思想”三、巩固练习教材第6页练习四、课堂小结本节课应掌握:由应用直接开平方法解形如x2p(p0)的方程,那么x转化为应用直接开平方法解形如(mxn)2p(p0)的方程,那么mxn,达到降次转化之目的若p0则方程无解五、作业布置教材第16页复习巩固1.