1、15.2.2 分式的加减教学目标(1)熟练地进行同分母的分式加减法的运算. (2)会把异分母的分式通分,转化成同分母的分式相加减. 重点难点1重点:熟练地进行异分母的分式加减法的运算.2难点:熟练地进行异分母的分式加减法的运算.3认知难点与突破方法 进行异分母的分式加减法的运算是难点,异分母的分式加减法的运算,必须转化为同分母的分式加减法,然后按同分母的分式加减法的法则计算,转化的关键是通分,通分的关键是正确确定几个分式的最简公分母,确定最简公分母的一般步骤:(1)取各分母系数的最小公倍数;(2)所出现的字母(或含字母的式子)为底的幂的因式都要取;(3)相同字母(或含字母的式子)的幂的因式取指
2、数最大的.在求出最简公分母后,还要确定分子、分母应乘的因式,这个因式就是最简公分母除以原分母所得的商.异分母的分式加减法的一般步骤:(1)通分,将异分母的分式化成同分母的分式;(2)写成“分母不便,分子相加减”的形式;(3)分子去括号,合并同类项;(4)分子、分母约分,将结果化成最简分式或整式. 教学过程一、例、习题的意图分析1教科书问题3是一个工程问题,题意比较简单,只是用字母n天来表示甲工程队完成一项工程的时间,乙工程队完成这一项工程的时间可表示为n+3天,两队共同工作一天完成这项工程的.这样引出分式的加减法的实际背景,问题4的目的与问题3一样,从上面两个问题可知,在讨论实际问题的数量关系
3、时,需要进行分式的加减法运算.2思考是为了让学生回忆分数的加减法法则,类比分数的加减法,分式的加减法的实质与分数的加减法相同,让学生自己说出分式的加减法法则.3教科书例6计算应用分式的加减法法则.第(1)题是同分母的分式减法的运算,第二个分式的分子式个单项式,不涉及到分子变号的问题,比较简单,所以要补充分子是多项式的例题,教师要强调分子相减时第二个多项式注意变号;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积,没有涉及分母要因式分解的题型.例6的练习的题量明显不足,题型也过于简单,教师应适当补充一些题,以供学生练习,巩固分式的加减法法则.二、课堂堂引入1.出示教科书问题3、问
4、题4,教师引导学生列出答案.引语:从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.2下面我们先观察分数的加减法运算,请你说出分数的加减法运算的法则吗?3. 分式的加减法的实质与分数的加减法相同,你能说出分式的加减法法则?4请同学们说出的最简公分母是什么?你能说出最简公分母的确定方法吗? 三、例题讲解(教科书)例6.计算分析 第(1)题是同分母的分式减法的运算,分母不变,只把分子相减,第二个分式的分子式个单项式,不涉及到分子是多项式时,第二个多项式要变号的问题,比较简单;第 (2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积.(补充)例 计算:(1). 分析 第(1)题是同分母的分式加减法的运算,强调分子为多项式时,应把多项事看做一个整体加上括号参加运算,结果也要约分化成最简分式. 解:=(2)分析 第(2)题是异分母的分式加减法的运算,先把分母进行因式分解,再确定最简公分母,进行通分,结果要化为最简分式. 解:= 四、随堂练习计算:(1) (2) (3) (4) 五、课后练习计算(1) (2) (3) (4) 六、答案:四、(1) (2) (3) (4)1五、(1) (2) (3)1 (4)