收藏 分销(赏)

辽宁省瓦房店市第八初级中学八年级数学上册《14.1 变量与函数》教学设计 人教新课标版.doc

上传人:s4****5z 文档编号:7418483 上传时间:2025-01-03 格式:DOC 页数:14 大小:338.50KB
下载 相关 举报
辽宁省瓦房店市第八初级中学八年级数学上册《14.1 变量与函数》教学设计 人教新课标版.doc_第1页
第1页 / 共14页
辽宁省瓦房店市第八初级中学八年级数学上册《14.1 变量与函数》教学设计 人教新课标版.doc_第2页
第2页 / 共14页
辽宁省瓦房店市第八初级中学八年级数学上册《14.1 变量与函数》教学设计 人教新课标版.doc_第3页
第3页 / 共14页
辽宁省瓦房店市第八初级中学八年级数学上册《14.1 变量与函数》教学设计 人教新课标版.doc_第4页
第4页 / 共14页
辽宁省瓦房店市第八初级中学八年级数学上册《14.1 变量与函数》教学设计 人教新课标版.doc_第5页
第5页 / 共14页
点击查看更多>>
资源描述

1、辽宁省瓦房店市第八初级中学八年级数学上册14.1 变量与函数教学设计 人教新课标版一内容和内容解析【教学内容】我们把第1、2、3小节整合为两个课时,第1课时介绍变量与函数的概念,第2课时探索量与量之间的函数关系,并用合适的函数表示方法进行描述,第3课时认识函数图象(“看图说话”),第4、5课时画函数图象本设计是第1课时,是典型的概念课,引导学生从生活实例中抽象出常量、变量与函数等概念,其中函数的概念是本节核心内容 【教材分析】函数是数学中最重要的基本概念之一,它刻画了现实世界中一类数量关系之间的“特殊对应关系”方程、不等式、函数是初中数学的核心概念,它们从不同的角度刻画一类数量关系本节课是函数

2、入门课,首先必须准确认识变量与常量的特征,初步感受到现实世界各种变量之间联系的复杂性,同时感受到数学研究方法的化繁就简,在初中阶段主要研究两个变量之间的特殊对应关系课本的引例较为丰富,但有些内容学生较为陌生,本设计只选取了其中较为简单的例子考虑到初中列函数的解析式是一个难点,其本质是用含x的式子表示y,本节课中涉及的列函数解析式不是新的教学内容(将来学的待定系数法才是新的教学内容),也不是本节课能解决的问题,因此把设计的重点放在认识“两个变量间的特殊对应关系:由哪一个变量确定另一变量;唯一确定的含义” 考虑到学生在日常生活中也能接触到函数图象,函数图象较为直观形象,便于学生理解函数的概念,因此

3、把函数图象中的部分内容提前到第1课时【学情分析】变量与函数的概念把学生由常量数学的学习引入变量数学学习中.“变量与函数”较为抽象,学生初次接触函数的概念,难以理解定义中“唯一确定”的准确含义另一方面,学生在日常生活中也接触到函数图象、两个变量的关系等生活实例在本节教学中,试图从学生较为熟悉的现实情景入手,引领学生认识变量和函数的存在和意义,体会变量之间的互相依存关系和变化规律,借助生活实例,认识“由哪一个变量确定另一个变量?唯一确定的含义是什么?”,初步理解函数的概念二目标和目标解析【知识目标】(1)基于生活经验,学生初步感知用常量与变量来刻画一些简单的数学问题能指出具体问题中的常量、变量(2

4、)借助简单实例,初步理解变量与函数的关系,知道存在一类变量可以用函数方式来刻画能举出涉及两个变量的实例,并指出由哪一个变量确定另一个变量,这两个变量是否具有函数关系(3)借助简单实例,初步理解对应的思想,体会函数概念的核心是两个变量之间的特殊对应关系能判断两个变量间是否具有函数关系【过程与方法目标】借助简单实例,引领学生参与变量的发现和函数概念的形成过程,体会从生活实例抽象出数学知识的方法,感知现实世界中变量之间联系的复杂性,数学研究从最简单的情形入手,化繁为简.【情感与态度目标】(1)从学生熟悉、感兴趣的实例引入课题,学生初步感知实际生活蕴藏着丰富的数学知识,感知数学是有用、有趣的学科.(2

5、) 借助简单实例,引领学生参与变量的发现和函数概念的形成过程,体验“发现、创造”数学知识的乐趣【目标解析】函数的概念具有高度的抽象性学生知道代数式中的字母可以表示数,方程中的未知数求出来后也是一个“已知数”,从“静态”的角度理解字母所表示的数学生的生活经验中已具备一些朴素的函数关系的实例学生初次接触两个变量之间的特殊对应关系,教师应根据学生的认知基础,创设丰富的现实情境,使学生在丰富的现实情境中感知变量和函数的存在和意义,认识常量与变量,理解具体实例中两个变量的特殊对应关系,初步理解函数的概念 【变量与函数概念的核心】两个变量间的特殊对应关系:(1)由哪一个变量确定另一个变量;(2)唯一对应关

6、系.【教学重点】借助简单实例,从两个变量间的特殊对应关系抽象出函数的概念【教学难点】怎样理解“唯一对应”【教学关键】借助实例,明确由哪一个量的变化引起另一个量的变化,进而指出由哪一个变量确定另一个变量;“唯一对应”是一种特殊的对应关系,包括“一对一”、“多对一”“一对多”不是函数关系三、教学问题诊断分析【学生已有的知识结构】学生已学习了实数的加减、乘除、乘方与开方的运算,学习了列代数式及求代数式的值,会列一次方程(组)及解方程组,知道字母可以表示数,方程中的未知数求出来后也是一个“已知数”,从“静态”的角度理解字母所表示的数学生的生活经验中具有一些朴素的函数实例,依托学生熟悉的生活实例,引导学

7、生认识抽象的函数的概念符合学生的认知规律【学生学习的困难】学生对“唯一对应关系”的理解是一个难点,特别是没有实例背景的变量间的对应关系 应借助学生熟悉的简单实例明确研究函数的目的,理解变量间的特殊对应关系,初步理解函数的概念函数关系的本质,是变量与变量之间的特殊对应关系(单值对应)如果直接研究某个量y有一定困难,我们可以去研究另一个与之有关的量x,而x相对于y来说,比较容易研究,从而达到研究的目的.这也是一种化繁为简的转化思想四、教学方法与教学手段学生的学法应以自主探究与合作交流为主通过小组合作,认识“唯一确定”的准确含义教法采用师生互动探究式教学函数概念具有高度的抽象性,借助几何画板形象演示

8、几何图形中量与量之间的函数关系,借助学生熟悉的生活实例,引领学生经历从具体实例中抽象出常量、变量与函数的过程,初步理解抽象的函数概念五、教学过程导言:1.名侦探柯南中有这样一个情景:柯南根据案发现场的脚印,锁定疑犯的身高你知道其中的道理吗?理由:脚印身高 2.我们班中同学A与职业相扑运动员,谁的饭量大?你能说明理由吗? 理由:体重饭量 上述两个问题中都涉及两个量的关系,这一节课我们研究两个量的关系,研究怎样由一个量来确定另一个量板书课题:两个_量的关系:1.一个_量另一个_量说明:从学生的生活入手,开门见山,在极短的时间(一两分钟)内指明本节课的学习内容空格中将来填上变量的“变”字现实世界中各

9、种量之间的联系纷繁复杂,应向学生说明我们数学的研究方法是化繁就简,本节课只关系注一类简单的问题(一)概念的引入1.票房收入问题:每张电影票的售价为10元.(1)若一场售出150张电影票,则该场的票房收入是 元;(2)若一场售出205张电影票,则该场的票房收入是 元;(3)若一场售出310张电影票,则该场的票房收入是 元;(4)若一场售出张电影票,则该场的票房收入元,则 .思考:(1)票房收入随售出的电影票变化而变化,即随 的变化而变化;(2)当售出票数取定一个确定的值时,对应的票房收入的取值是否唯一确定?(例如,当=150时,的取值是唯一、还是有多个值?)答:_2如图,是某班同学一次数学测试中

10、的成绩登记表:这一数学测试中,(1)13号的成绩为_;(2)17号的成绩为_;(3)18号的成绩为_;(4)23号的成绩为_思考:(1)测试成绩随_的变化而变化;(2)任意确定一个学号x,对应的成绩f的取值是否唯一确定?(例如,当学号=13时,所得成绩f的取值是唯一、还是有多个值?)答:_3.温度变化问题:如图一,是抚顺春季某一天的气温随时间t变化的图象,看图回答:图一(1)这天的8时的气温是 ,14时的气温是 ,22时的气温是 ; (2)这一天中,最高气温是 ,最低气温是 ;(3)这一天中,在4时12时,气温( ),在12时14时气温( ),在16时24时,气温( ).A.持续升高 B.持续

11、降低 C.持续不变思考:(1)天气温度随 的变化而变化,即随 的变化而变化;(2)当时间取定一个确定的值时,对应的温度的取值是否唯一确定?(例如,当=12时,所得温度的取值是唯一、还是有多个值?)答:_设计意图:这三个问题中都含有变量之间的单值对应关系,通过研究这些问题引出常量、变量、函数等概念,通过这种从实际问题出发开始讨论的方式,使学生体验从具体到抽象地认识过程.问题的形式有填空、列表、求值、写解析式、读图等,隐含着在函数关系中表示两个变量的对应关系有解析法、列表法、图象法.(二)概念的定义1.上述四个问题中,分别涉及哪些量的关系?通过哪一个量可以确定另一个量?答:票房收入问题中,涉及票价

12、(10元)、售出票数、票房收入,票数的变化会引起票房收入的变化,如图所示:售出票数票房收入类似的,有:学号x成绩f时间气温在上面的四个问题中,其中一个量的变化引起另一个量的变化(按照某种规律变化),变化的量叫做变量;有些量的值始终不变(例如电影票的单价10元)并且当其中一个变量取定一个值时,另一个变量就随之确定一个值以气温问题为例,时间的变化引起温度的变化,(1) 当t=0点时,T=2;当t=2点时,T=0;(2) 当t=12点时,T=8;当t=12点1分时,T=8;当t=12点2分时,T=8;当t=14点时,T=8;情况(1)(2)中,时间取定一个值时,所得T的对应值只有一个(可能是“一对一

13、”,也可能是“多对一”),即通过时间t,能把温度T“唯一确定”.反之,当T=8时,所得t的值为1214点之间的任一时刻(“多对一”),通过温度T,不能把时间t “唯一确定”.在这个问题中,我们把温度T称为时间t的函数(但时间t不是温度T的函数,因为通过温度T,不能把时间t “唯一确定”.)一般地,在一个变化过程中:(1)发生变化的量叫做 ; (2)不变的量叫做 ;(3)如果有两个变量和,对于的每一个值,都有 的值与之对应,称是 ,是的 ;(4)如果当时,叫做当时的函数值.说明:如何把具体的实例进行抽象,形式化为数学知识是本课的关键这里提出的问题“上述四个问题中,分别涉及哪些量的关系?通过哪一个

14、量可以确定另一个量?”是一个关键的“脚手架”,通过“脚手架”引领学生经历数学概念的形成过程,引导学生认识为什么要引进变量、常量、函数的概念,逐步了解如何给数学概念下定义问题回顾指出前面三个问题中的涉及到的量,并指出其中的变量、常量、自变量与函数.1.“票房收入问题”中,(1)涉及到的量有 _,其中的变量是 _,常量是_;(2)_是自变量,是的函数.2.“成绩问题”中,(1)涉及到的量有 _,其中的变量是 _,常量是_;(2)_是自变量,是的函数.3.“气温变化问题”,(1)涉及到的量有 _,其中的变量是 _,常量是_;(2)_是自变量,是的函数.注意:常量与变量必须依存于一个变化过程中,判断一

15、个量是常量还是变量,关键看它在这个变化过程中是否发生变化.设计意图:巩固常量、变量、自变量、函数的概念,例1 一个三角形的底边为5,这一边上的高可以任意伸缩,三角形的面积也随之发生了变化.解:(1)面积随变化的关系式_ ,其中常量是 ,变量是 ,图二 是自变量, 是 的函数; (2)当3时,面积_;(3)当10时,面积_;(4)当高由1变化到5时,面积从_ _变化到_.例2 如果用表示圆的半径,半径r的变化会引起圆中哪些量发生变化?这些变量是半径r的函数吗?分析:半径圆面积并有,S是r的函数;半径圆周长C并有,C是r的函数;半径圆直径d并有,d是r的函数说明:此两例引导学生体会几何问题中两个变

16、量在动态变化过程中的依存关系,顺便说明字母“”是常量,但这并不是本节课的核心念(三)概念巩固1. 购买一些签字笔,单价3元,总价为元,签字笔为支,根据题意填表:(支)123(元)(1)随变化的关系式 , 是自变量, 是 的函数;(2)当购买8支签字笔时,总价为 元.2.周末,小李8时骑自行车从家里出发,到野外郊游,16时回到家里.他离开家后的距离(千米)与时间(时)的关系如图所示.(1)当时,;当时,;(2)小李从_时开始第一次休息,休息时间为_小时,此时离家_千米.(3)距离是时间t的函数吗?(4)*时间是距离的函数吗?设计意图:1.例题和巩固练习,巩固变量与函数等概念,让学生充分体会到许多

17、问题中的变量关系都存在着函数关系,隐含着在函数关系中表示两个变量的对应关系有解析法、列表法、图象法.2. 练习二2(4)涉及反函数的知识,不少教师认为超纲不应涉及,本人的实践证明,提出这样的问题更有利于学生理解函数的“单值对应关系”,有利于学生明确“由哪一个量能唯一确定另一个量”,从而更好地理解自变量与函数的关系,更重要的是让学生养成逆向思维的习惯当然,不宜在反函数的概念上作过多的拓展(四)概念辨析1.两个变量x、y满足关系式,填表并回答问题:x14916y是的函数吗?为什么?2.下列各图中,表示是的函数的有_(可以多选).理解函数概念把握两点:由哪一个变量确定另一个变量;唯一对应关系.设计意

18、图:理解函数概念的核心是“由哪一个变量确定另一个变量;唯一对应关系”,给定自变量的任意一个值就有唯一确定的的值和它对应,这样的对应可以是“一个自变量对应一个因变量”(简称“一对一”),也可以是“几个自变量对应一个因变量”(简称“多对一”),但不可以是“一个自变量对应多个因变量”(简称“一对多”).3你能举出涉及两个变量的例子吗?它们具有函数关系吗?(五)小结函数的概念:自变量(确定)函数(值 _ 确定)设计意图:通过小结,让学生抓住理解函数概念的实质(六)作业1. 行程问题:汽车以60千米/秒的速度匀速行驶,行驶里程为千米,行驶时间为小时.请根据题意填表:(时)1234510(千米)从表中可以

19、发现:(1)行驶路程随 的变化而变化,即随 的变化而变化;(2)当行驶时间取定一个确定的值时,行驶路程的取值是否唯一确定?(例如,当=3时,的取值是唯一、还是有多个值?)答:_2写出下列问题中的函数解析式,并指出其中的自变量、函数:(1)正方形的面积与边长关系式;(2)秀水村的耕地面积是m2,这个村人均占有耕地面积随这个村人数的变化而变化.解:(1)函数解析式: , 是自变量, 是 的函数;(2)函数解析式: , 是自变量, 是 的函数.3. 一年期的存款利率是4%,()填表: 本金(元)1002005001000一年到期后所得的利息(元)()本金元与一年到期后所得的利息元之间的关系式是_;(

20、)常量是 ,变量是 ,其中 是自变量, 是 的函数.4. 小明、爸爸和爷爷同时从家中出发到同一目的地又立即返回.小明去时骑自行车,返回时步行;爷爷去时步行,返回时骑自行车;爸爸往返都步行. 三人的步行速度不等,小明与爷爷骑自行车的速度相等. 下面表示各人行走的路程与时间的关系图中,表示小明的是图( ), 表示爷爷的是图( ), 表示爸爸的是图( ).5.一辆汽车从甲地开往乙地,开始3小时内以50千米 / 时的速度前进,但因为汽车出现故障,进行维修花去了2小时,接着以75千米 / 时的速度前进,经过2小时到达乙地图四(1)请用图象表示汽车行驶的路程与时间的关系1234567(2)路程S和时间t具

21、有函数关系吗?如果具有函数关系,请指出其中的自变量与函数设计理念:变量与函数的概念把学生由常量数学引入变量数学,是学生数学认识上的一天飞跃.因此,设计本课时应根据学生的认识基础,创设在一定历史条件下的现实情境,使学生从中感知到变量函数的存在和意义,体会变量之间的相互依存关系和变化规律.遵循从具体到抽象、感性到理性的渐进认识规律和以教师为主导、学生为主体的教学原则,引导学生探究新知,引导学生在观察、分析后归纳,然后提出注意问题,帮助学生把握概念的本质特征,并在概念的形成过程中培养学生的观察、分析概括和抽象等的能力.同时在引导学生探索变量之间的规律,抽象出函数概念的过程中,要注重学生的过程经历和体验,让学生领悟到现实生活中存在着多姿多彩的数学问题,并能从中提出问题、分析问题和解决问题.还要培养一种团队合作精神,提高探索、研究和应用的能力,使学生真正成为数学学习的主人.

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服