1、第5课 分式知识点:分式,分式的基本性质,最简分式,分式的运算,零指数,负整数,整数,整数指数幂的运算大纲要求:了解分式的概念,会确定使分式有意义的分式中字母的取值范围。掌握分式的基本性质,会约分,通分。会进行简单的分式的加减乘除乘方的运算。掌握指数指数幂的运算。考查重点与常见题型:1考查整数指数幂的运算,零运算,有关习题经常出现在选择题中,如:下列运算正确的是( )(A)-40 =1 (B) (-2)-1= (C) (-3m-n)2=9m-n (D)(a+b)-1=a-1+b-12.考查分式的化简求值。在中考题中,经常出现分式的计算就或化简求值,有关习题多为中档的解答题。注意解答有关习题时,
2、要按照试题的要求,先化简后求值,化简要认真仔细,如: 化简并求值:. +(2),其中x=cos30,y=sin90知识要点1分式的有关概念 设A、B表示两个整式如果B中含有字母,式子就叫做分式注意分母B的值不能为零,否则分式没有意义 分子与分母没有公因式的分式叫做最简分式如果分子分母有公因式,要进行约分化简2、分式的基本性质 (M为不等于零的整式)3分式的运算 (分式的运算法则与分数的运算法则类似) (异分母相加,先通分); 4零指数 5负整数指数 注意正整数幂的运算性质 可以推广到整数指数幂,也就是上述等式中的m、 n可以是O或负整数考查题型:1 下列运算正确的是( )(A)40 =1 (B
3、) (2)-1= (C) (3m-n)2=9m-n (D)(a+b)-1=a-1+b-12化简并求值:. +(2),其中x=cos30,y=sin903、 中分式有4当x=-时, 分式的值为零;5当x取-值时,分式有意义;6已知是恒等式,则A,B。7化简()8先化简后再求值:+,其中x= 9已知2,求的值考点训练:1, 分式 当x=- 时有意义,当x=-时值为正。2, 分式中的取值范围是( )(A)x1 (B)x-1 (C)x0 (D)x1且x03, 当x=-时,分式的值为零?4, 化简(1)1+ (2) (3)a+(a-) (a-2)(a+1)(4)。已知b(b1)a(2ba)=b+6,求a
4、b的值 (5).(1+)(x4+)3 (1) (6). 已知x+=,求 的值 (7)若1,求证:解题指导, 1当a=-时,分式无意义,当a-=-时,这个分式的值为零.2写出下列各式中未知的分子或分母,(1) = (2)= 3不改变分式的值,把分式的分子,分母各项的系数化为整数,且最高次项的系数均为正整数,得-,分式约分的结果为。4把分式中的x,y都扩大两倍,那么分式的值( )(A)扩大两倍 (B) 不变 (C) 缩小 (D) 缩小两倍5分式, , 的最简公分母为( )(A) 4(mn)(nm)x2 (B) (C)4x2(mn)2 (D)4(mn)x2 6下列各式的变号中,正确的是 (A)= ( B)= (C) =(D) 7若x y0,则 的结果是( )(A) 0 (B)正数 (C) 负数 (D) 以上情况都有可能8化简下列各式:(1)+ (2)(xy+y2) (3)1(a)2 (4)若(1)a=1,求 +1的值(5) 已知 x25xy+6y2=0 求 的值独立训练 1化简 2当a=时,求分式( +1) 的值3化简 4。已知 += 值,求+的值5已知m25m+1=o 求(1) m3+ (2)m的值6。当x=1998,y=1999时, 求分式 的值 7已知=,求 的值 8化简 (9)求的值。(10)设,求证:、三个数中必有两个数之和为零。