1、第五十九课时5.1一元一次方程(2)一、课题 5.1一元一次方程(2)二、教学目标1使学生掌握移项的概念,并能利用移项解简单的一元一次方程;2培养学生观察、分析、概括和转化的能力,提高他们的运算能力三、教学重点和难点重点:移项解一元一次方程难点:移项的概念四、教学手段引导活动讨论五、教学方法启发式教学六、教学过程(一)、从学生原有的认知结构提出问题1等式的性质是什么?2什么叫一元一次方程?方程ax=b(a0)的解是什么?3(投影)解方程:(让学生口答本题,发动其余学生及时纠正出现的错误,做到一题多用)我们已经学习了解最简单的一元一次方程ax=b(a0),今天学习把某些简单的一元一次方程化为最简
2、的一元一次方程,从而求得其解(教师板书课题:一元一次方程的解法(二)(二)、师生共同研究解简单的一元一次方程的方法例1 解方程3x-5=4在分析本题时,教师应向学生提出如下问题:1怎样才能将此方程化为ax=b的形式?2上述变形的根据是什么?(以上过程,如学生回答有困难,教师应作适当引导)解:3x-5=4,方程两边都加上5,得3x-5+54+5,即3x=4+5,3x=9,x=3(本题的解答过程应找多名学生分别口述,教师严格、规范板书,并请学生口算检验)例2 解方程7x=5x-4(此题的分析与解答过程的教学设计可仿照例1重复进行)针对例1,例2的分析与解答,教师可提出以下几个问题:3将方程3x-5
3、=4,变形为3x=4+5这一过程中,什么变化了?怎样变化的?4将方程7x=5x-4,变形为7x-5x=-4这一过程中,什么变化了?怎样变化的?(-5变为+5,并由方程的左边移到方程的右边;5x变为-5x,并由方程的右边移到方程的左边)我们将方程中某一项改变符号后,从方程的一边移到另一边,这种变形叫做移项利用移项,我们可以将例2按以下步骤来书写解:7x=5x-4,移项,得7x-5x=-4,合并同类项,得2x=-4,未知数x的系数化1,得x=-2至此,应让学生总结出解诸如例1、例2这样的一元一次方程的步骤,并强调移项要变号(三)、课堂练习(用投影给出)解方程:(这个练习,应找部分学生板演,其余学生
4、在下面自行完成,其间,教师要巡视,发现问题及时纠正,并鼓励同学间互相讲评,同时,教师还应要求学生严格参照例2的解题格式完成这个练习,并要求口算检根)(四)、师生共同小结首先,采取师生一问一答的形式回顾本节课学习了哪些内容?采用了什么样的思维方法?在解题时需要注意什么?然后,教师需指出,采用了将“未知”转化为“已知”的思维方法,这是一种非常重要的思维方法,它在后继课的学习起着非常重要的作用同时再次强调移项要变号最后,教师可引申,若所给方程中的某一项或某几项有括号,我们应如何求出方程的解?(为下节课埋下伏笔,引出悬念,从而激发学生的学习兴趣)七、练习设计解下列方程:思考题解关于x的方程:(1)ax
5、=bx; (2)(a2+1)x=(a2-1)x八、板书设计 5.1一元一次方程(2)(一)知识回顾 (三)例题解析 (五)课堂小结 例1、例2(二)观察发现 (四)课堂练习 练习设计九、教学后记关于一元一次方程解法的授课内容,本教学过程设计在内容编排上与人教版教材在编排上稍有不同,主要是基于以下两点原因:1先指出解最简的一元一次方程,在此基础上再逐步提出解较复杂的一元一次方程,把解较复杂的一元一次方程的过程化归成解最简单的一元一次方程的过程,这样提出问题和寻求解题方法比较自然;2学生在解一元一次方程时的很多错误,追其根源都是方程ax=b程的求根公式所以,应先集中讲解一下如何准确、快速的解最简单的一元一次方程显然它对学生来说并不困难,但仍要求学生进一步重视它,努力把它用准、用熟