1、内蒙古乌拉特中旗二中七年级数学上册 5.1一元一次方程(3)教案一、课题 二、教学目标1使学生掌握解一元一次方程的移项规律,并且掌握带有括号的一元一次方程的解法;2培养学生观察、分析、转化的能力,同时提高他们的运算能力三、教学重点和难点重点:带有括号的一元一次方程的解法难点:解一元一次方程的移项规律四、教学手段引导活动讨论五、教学方法启发式教学六、教学过程(一)、从学生原有的认知结构提出问题1解方程ax=b(a0),并指出解法根据2什么叫做移项?移项的根据是什么?移项时应当注意什么?3(投影)解下列方程:本节课我们继续学习移项应注意的问题和含有括号的一元一次方程的解法(二)、师生共同研究讨论解
2、一元一次方程的移项规律例1 解方程5x+2=7x-8在分析本题时,教师向学生提出如下问题:1利用什么方法可将所给方程化为ax=b的形式?2怎样移项呢?根据学生回答的情况,得到的下面两种解法解法1 5x+2=7x-8,移项,得5x-7x=-8-2,合并同类项,得-2x=-10系数化1,得x=5解法2 移项,得2+8=7x-5x,合并同类项,得10=2x,系数化1,得x=5最后,请学生口算验根结合本例题的解法1和解法2,启发学生总结出求解像上述例题这样的一元一次方程时,它的移项规律是什么(一般地,把含有未知数的项移到一边,不含未知数的项移到另一边)(若学生回答有困难,教师应做适当引导)然后,教师应
3、指出,习惯上多把含有未知数的项移到左边,有时为了简单也可以移到左边(三)、师生共同探讨得出带有括号的一元一次方程的解法例2 解方程2(x-2)-3(4x-1)=9(1-x)解:(怎样才能将所给方程转化为例1所示方程的形式呢?请学生回答)去括号,得2x-4-12x+3=9-9x,移项,得2x-12x+9x=9+4-3,合并同类项,得-x=10,系数化1,得x=-10(本题解答过程应首先由学生口述,教师板书,然后,请学生检验-10是否为原方程的根)此时,启发学生总结遇有带括号的一元一次方程的解法(方程里含有括号时,移项前,要先去括号)(四)、课堂练习(投影)1下列方程的解法对不对?若不对怎样改正?
4、解方程2(x+3)-5(1-x)=3(x-1)解:2x+3-5-5x=3x-1,2x-5x-3x3+5-3,-6x=-1,2解方程:(1)2x+5=25-8x; (2)8x-2=7x-2; (3)2x+3=11-6x;(4)3x-4+2x=4x-3; (5)10y+7=12-5-3y; (6)2.4x-9.8=1.4x-93解方程:(1)3(y+4)12; (2)2-(1-z)=-2;(3)2(3y-4)+7(4-y)=4y; (4)4x-3(20-x)=6x-7(9-x);(5)3(2y+1)=2(1+y)+3(y+3)(五)、师生共同小结师生采用一问一答的形式,一起总结本节课都学习哪些内容
5、?哪些思想方法?应注意什么?在此基础上,教师应着重指出在运用移项规律解题时,一般情况下,应把含有未知数的项移到等号的左边,但有时依具体情况,也可灵活处理;将“复杂”问题转化为“简单”问题,将“未知”问题转化为“已知”问题,将“陌生”问题转化为“熟悉”问题,这种思考问题的方法是一种非常重要的数学思考方法本节课的例题、练习题的解答就充分地体现这一点七、练习设计解下列方程:18x-4=6x-20x-6+3; 23x-26+6x-9=12x+50-7x-5;34(2y+3)=8(1-y)-5(y-2); 415-(7-5x)=2x+(5-3x);512-3(9-y)5(y-4)-7(7-y); 616
6、(1-2x)-4(11-2x)=7(2-6x);73x-4(2x+5)=7(x-5)+4(2x+1); 82(7y-2)+10y=5(4y+3)+3y思考题解下列方程:12|x|-1=3-|x|;22|x+1|=|x+1|八、板书设计 5.1一元一次方程(3)(一)知识回顾 (三)例题解析 (五)课堂小结 例1、例2(二)观察发现 (四)课堂练习 练习设计九、教学后记关于一元一次方程解法的授课内容,本教学过程设计在内容编排上与人教版教材在编排上稍有不同,主要是基于以下两点原因:1先指出解最简的一元一次方程,在此基础上再逐步提出解较复杂的一元一次方程,把解较复杂的一元一次方程的过程化归成解最简单的一元一次方程的过程,这样提出问题和寻求解题方法比较自然;2学生在解一元一次方程时的很多错误,追其根源都是方程ax=b程的求根公式所以,应先集中讲解一下如何准确、快速的解最简单的一元一次方程显然它对学生来说并不困难,但仍要求学生进一步重视它,努力把它用准、用熟