收藏 分销(赏)

九年级数学上册 24.2 与圆有关的位置关系教案1 (新版)新人教版-(新版)新人教版初中九年级上册数学教案.doc

上传人:s4****5z 文档编号:7410725 上传时间:2025-01-03 格式:DOC 页数:6 大小:191.50KB 下载积分:10 金币
下载 相关 举报
九年级数学上册 24.2 与圆有关的位置关系教案1 (新版)新人教版-(新版)新人教版初中九年级上册数学教案.doc_第1页
第1页 / 共6页
九年级数学上册 24.2 与圆有关的位置关系教案1 (新版)新人教版-(新版)新人教版初中九年级上册数学教案.doc_第2页
第2页 / 共6页


点击查看更多>>
资源描述
与圆有关的位置关系 课 标 解 读 与 教 材 分 析 【课标要求】 1、理解并掌握设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外d>r;点P在圆上d=r;点P在圆内d<r及其运用。 2、理解不在同一直线上的三个点确定一个圆并掌握它的运用。 3、了解三角形的外接圆和三角形外心的概念。 4、了解反证法的证明思想。 5、形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神 教学内容分析: 复习圆的两种定理和形成过程,并经历探究一个点、两个点、三个点能作圆的结论及作图方法,给出不在同一直线上的三个点确定一个圆.接下去从这三点到圆心的距离逐渐引入点P到圆心距离与点和圆位置关系的结论并运用它们解决一些实际问题 教 学 目 标 知识 与 技能 (1)了解直线和圆的位置关系的有关概念。 (2)理解设⊙O的半径为r,直线L到圆心O的距离为d,则有: 直线L和⊙O相交d<r;直线L和⊙O相切d=r;直线L和⊙O相离d>r。 (3)理解切线的判定定理:理解切线的性质定理并熟练掌握以上内容解决一些实际问题。 过程 与 方法 复习点和圆的位置关系,引入直线和圆的位置关系,以直线和圆的位置关系中的d=r直线和圆相切,讲授切线的判定定理和性质定理。 情感 态度 价值观 形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神。 教学 重点 与 难点 重点 切线的判定定理;切线的性质定理及其运用它们解决一些具体的题目。 难点 由上节课点和圆的位置关系迁移并运动直线导出直线和圆的位置关系的三个对应等价。 媒 体教 具 圆规、直尺 课时 一课时 教 学 过 程 修改栏 教学内容 师生互动 一、复习引入 同学们,我们前一节课已经学到点和圆的位置关系.设⊙O的半径为r,点P到圆心的距离OP=d, 则有:点P在圆外d>r,如图(a)所示; 点P在圆上d=r,如图(b)所示; 点P在圆内d<r,如图(c)所示. 二、探索新知 前面我们讲了点和圆有这样的位置关系,如果这个点P改为直线L呢?它是否和圆还有这三种的关系呢? 固定一个圆,把三角尺的边缘运动,如果把这个边缘看成一条直线,那么这条直线和圆有几种位置关系? (老师口答,学生口答)直线和圆有三种位置关系:相交、相切和相离. (老师板书)如图所示: 如图(a),直线L和圆有两个公共点,这时我们就说这条直线和圆相交,这条直线叫做圆的割线. 如图(b),直线和圆有一个公共点,这时我们说这条直线和圆相切,这条直线叫做圆的切线,这个点叫做切点. 如图(c),直线和圆没有公共点,这时我们说这条直线和圆相离. 我们知道,点到直线L的距离是这点向直线作垂线,这点到垂足D的距离,按照这个定义,作出圆心O到L的距离的三种情况? (学生分组活动):设⊙O的半径为r,圆心到直线L的距离为d,请模仿点和圆的位置关系,总结出什么结论? 老师点评直线L和⊙O相交d<r,如图(a)所示; 直线L和⊙O相切d=r,如图(b)所示; 直线L和⊙O相离d>r,如图(c)所示。 因为d=r直线L和⊙O相切,这里的d是圆心O到直线L的距离,即垂直,并由d=r就可得到L经过半径r的外端,即半径OA的A点,因此,很明显的,我们可以得到切线的判定定理: 经过半径的外端并且垂直于这条半径的直线是圆的切线. (学生分组讨论):根据上面的判定定理,如果你要证明一条直线是⊙O的切线,你应该如何证明? (老师点评):应分为两步:(1)说明这个点是圆上的点,(2)过这点的半径垂直于直线. 例1、如图,已知Rt△ABC的斜边AB=8cm,AC=4cm. (1)以点C为圆心作圆,当半径为多长时,直线AB与⊙C相切?为什么? (2)以点C为圆心,分别以2cm和4cm为半径作两个圆,这两个圆与直线AB分别有怎样的位置关系? 分析:(1)根据切线的判定定理可知,要使直线AB与⊙C相切,那么这条半径应垂直于直线AB,并且C点到垂足的长就是半径,所以只要求出如图所示的CD即可。 (2)用d和r的关系进行判定,或借助图形进行判定。 解:(1)如图24-54:过C作CD⊥AB,垂足为D。 在Rt△ABC中 BC== ∴CD==2 因此,当半径为2cm时,AB与⊙C相切。 理由是:直线AB为⊙C的半径CD的外端并且CD⊥AB,所以AB是⊙C的切线。 (2)由(1)可知,圆心C到直线AB的距离d=2cm,所以 当r=2时,d>r,⊙C与直线AB相离; 当r=4时,d<r,⊙C与直线AB相交。 刚才的判定定理也好,或者例1也好,都是不知道直线是切线,而判定切线,反之,如果知道这条直线是切线呢?有什么性质定理呢? 实际上,如图,CD是切线,A是切点,连结AO与⊙O于B,那么AB是对称轴,所以沿AB对折图形时,AC与AD重合,因此,∠BAC=∠BAD=90°。 因此,我们有切线的性质定理: 圆的切线垂直于过切点的半径。 三、巩固练习 教材练习。 四、归纳小结(学生归纳,总结发言老师点评) 本节课应掌握: 1、直线和圆相交、割线、直线和圆相切,切线、切点、直线和圆相离等概念。 2、设⊙O的半径为r,直线L到圆心O的距离为d则有: 直线L和⊙O相交d<r 直线L和⊙O相切d=r 直线L和⊙O相离d>r 3、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。 4、切线的性质定理,圆的切线垂直于过切点的半径。 5、应用上面的知识解决实际问题。 老师口答,学生口答,老师并在黑板上板书 学生活动 板 书设 计 1、直线和圆的位置关系 2、切线的判定定理 直线L和⊙O相交d<r 例题 直线L和⊙O相切d=r 直线L和⊙O相离d>r 作业 布置 教 学反 思
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服