1、第十四章 一次函数 14.2.2 一次函数(2) 教学目标 (一)教学知识点 学会用待定系数法确定一次函数解析式 具体感知数形结合思想在一次函数中的应用 利用一次函数知识解决相关实际问题 (二)能力训练目标 经历待定系数法应用过程,提高研究数学问题的技能 体验数形结合,逐步学习利用这一思想分析解决问题 体会解决问题方法多样性,发展创新实践能力 (三)情感与价值观要求 积极参与活动,提高学习兴趣 养成实事求是、具体问题具体分析的习惯 教学重点 待定系数法确定一次函数解析式 灵活运用知识解决相关问题 教学难点 灵活运用有关知识解决相关问题 教学方法 归纳总结 实践应用创新 教具准备 多媒体演示 教
2、学过程 提出问题,创设情境 我们前面学习了有关一次函数的一些知识,掌握了其解析式的特点及图象特征,并学会了已知解析式画出其图象的方法以及分析图象特征与解析式之间的联系规律如果反过来,告诉我们有关一次函数图象的某些特征,能否确定解析式呢?如何利用一次函数知识解决相关实践问题呢? 这将是我们这节课要解决的主要问题,大家可有兴趣? 导入新课 有这样一个问题,大家来分析思考,寻求解决的办法 活动一 活动设计内容: 已知一次函数图象过点(3,5)与(-4,-9),求这个一次函数的解析式 联系以前所学知识,你能总结归纳出一次函数解析式与一次函数图象之间的转化规律吗? 活动设计意图: 通过活动掌握待定系数法
3、在函数中的应用,进而经历思考分析,归纳总结一次函数解析式与图象之间转化规律,增强数形结合思想在函数中重要性的理解 教师活动: 引导学生分析思考解决由图象到解析式转化的方法过程,从而总结归纳两者转化的一般方法 学生活动: 在教师指导下经过独立思考,研究讨论顺利完成转化过程概括阐述一次函数解析式与图象转化的一般过程 活动过程及结论: 分析:求一次函数解析式,关键是求出k、b值因为图象经过两个点,所以这两点坐标必适合解析式由此可列出关于k、b的二元一次方程组,解之可得 设这个一次函数解析式为y=kx+b 因为y=k+b的图象过点(3,5)与(-4,-9),所以 师像这样先设出函数解析式,再根据条件确
4、定解析式中未知的系数,从而具体写出这个式子的方法,叫做待定系数法 尝试练习: 已知一次函数y=kx+2,当x=5时y的值为4,求k值 已知直线y=kx+b经过点(9,0)和点(24,20),求k、b值 解答: 当x=5时y值为4 即4=5k+2,k= 由题意可知: 解之得, 师下面我们来学习一次函数的应用 例小芳以200米分的速度起跑后,先匀加速跑5分钟,每分提高速度20米分,又匀速跑10分钟试写出这段时间里她跑步速度y(米分)随跑步时间x(分)变化的函数关系式,并画出图象 分析:本题y随x变化的规律分成两段:前5分钟与后10分钟写y随x变化函数关系式时要分成两部分画图象时也要分成两段来画,且
5、要注意各自变量的取值范围解:y= 师我们把这种函数叫做分段函数在解决分析函数问题时,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际 活动二 活动内容设计: 城有肥料200吨,城有肥料300吨,现要把这些肥料全部运往、两乡从城往、两乡运肥料费用分别为每吨20元和25元;从城往、两乡运肥料费用分别为每吨15元和24元现乡需要肥料240吨,乡需要肥料260吨怎样调运总运费最少? 活动设计意图: 通过这一活动让学生逐步学会应用有关知识寻求出解决实际问题的方法,提高灵活运用能力 教师活动: 引导学生讨论分析思考从影响总运费的变量有哪些入手,进而寻找变量个数及变量间关系,探究出总运费与变量间的
6、函数关系,从而利用函数知识解决问题 学生活动: 在教师指导下,经历思考、讨论、分析,找出影响总运费的变量,并认清它们之间的关系,确定函数关系,最终解决实际问题 活动过程及结论: 通过分析思考,可以发现:,运肥料共涉及4个变量它们都是影响总运费的变量然而它们之间又有一定的必然联系,只要确定其中一个量,其余三个量也就随之确定这样我们就可以设其中一个变量为x,把其他变量用含x的代数式表示出来: 若设x吨,则: 由于城有肥料200吨:,200x吨 由于乡需要240吨:,240x吨 由于乡需要260吨:,260200+x吨 那么,各运输费用为: 20x 25(200-x) 15(240-x) 24(60
7、+x) 若总运输费用为y的话,y与x关系为: y=20x+25(200-x)+15(240-x)+24(60+x) 化简得:y=40x+10040 (0x200) 由解析式或图象都可看出,当x=0时,y值最小,为10040 因此,从城运往乡0吨,运往乡200吨;从城运往乡240吨,运往乡60吨此时总运费最少,为10040元 师若城有肥料300吨,城200吨,其他条件不变,又该怎样调运呢? 生解题方法与思路不变,只是过程有所不同: x吨 300-x吨 240-x吨 x-40吨 反映总运费y与x的函数关系式为: y=20x+25(300-x)+15(240-x)+24(x-40) 化简:y=4x+
8、10140 (40x300) 由解析式可知: 当x=40时 y值最小为:y=440+10140=10300 因此从城运往乡40吨,运往乡260吨;从城运往乡200吨,运往乡0吨此时总运费最小值为10300吨 随堂练习 从、两水库向甲、乙两地调水,其中甲地需水15万吨,乙地需水13万吨,、两水库各可调出水14万吨从地到甲地50千米,到乙地30千米;从地到甲地60千米,到乙地45千米设计一个调运方案使水的调运量(万吨千米)最少 解答:设总调运量为y万吨千米,水库调往甲地水x万吨,则调往乙地(14-x)万吨,水库调往甲地水(15-x)万吨,调往乙地水(x-1)万吨 由调运量与各距离的关系,可知反映y与x之间的函数为: y=50x+30(14-x)+60(15-x)+45(x-1) 化简得:y=5x+1275 (1x14) 由解析式可知:当x=1时,y值最小,为y=51+1275=1280 因此从水库调往甲地1万吨水,调往乙地13万吨水;从水库调往甲地14万吨水,调往乙地0万吨水此时调运量最小,调运量为1280万吨千米 课时小结 本节课我们学习待定系数法根据图象确定函数解析式,总结出了函数解析式与图象转化的规律,并掌握了分段函数在实际问题中的应用,特别是学习了解决多个变量的函数问题,为我们以后解决实际问题开辟了一条坦途,使我们进一步认识到学习函数的重要性和必要性