1、相交直线所成的角第19教案教学目标:1理解相交直线所成的角意义,理解对顶角、同位角、内错角、同旁内角的概念。能准确地找出三条直线相交所构成的八个角的关系。2理解对顶角相等的性质。3会运用对顶角相等及等量代换的性质得到三条直线相交所得8个角之间的等量关系及互补关系。教学重点:三条直线构成的角的关系,对顶角相等的性质。教学难点:准确地找出三条直线构成的8个角之间的关系,用对顶角相交及等量代换得到它们之间的等量关系。教学过程:一、复习1、在同一平面内的两条直线有几种位置关系?2、经过直线外一点怎样画出这条直线的平行线?3、如果两条直线都与第三条直线平行,那么这两条直线互相平行即:如果ba,ca,那么
2、bc。 二、讲授新课1、做一做(P54的内容)22、对顶角的概念31如图1与3有共同的顶点O,其中一个角的两边分别4是另一个角的两边的反向延长线,这样的两个角叫做对顶角。CB3、学生从做一做中得出相应的结论,也可从简单的推理中得到:对顶角相等。1与3都是2的补角,因为同角的补角相等,所以13。M4、说一说:生活中的对顶角5、画直线AB、CD与MN相交,找出它们中的对顶角。 6、讲解同位角、内错角、同旁内角的概念7、假设直线AB,CD被MN所截,有一对同位角相等比如说15,找出图形中相等的角或互补的角。8、应用“对顶角相等”及“等量代换”及等式的性质,可以得出相应的一些结论:(1)两条直线被第三条直线所截,如果有一对同位角相等,那么其他几对同位角也相等,并且内错角也相等,同旁内角互补。(2)两条直线被第三条直线所截,如果有一对内错角相等,那么其他几对内错角也相等,并且同位角也相等,同旁内角互补。(3)两条直线被第三条直线所截,如果有一对同旁内角互补,那么另一对同旁内角也互补,并且同位角相等,内错角也相等。D三、练习及小结11、练习P56练习1、2题A34B2、补充:如图,直线AB,AC被DE所截,则1和6是6同位角,那么6和 是内错角,6和 是同旁内角。75如果5=2,那么4 6。后记: