资源描述
用坐标表示平移
课 标
解 读
与
教 材
分 析
【课标要求】
1.掌握坐标变化与图形平移的关系;
2.能利用点的平移规律将平面图形进行平移;
3.会根据图形上点的坐标的变化,来判定图形的移动过程。
教学内容分析:
在平面直角坐标系下图形的平移规律;坐标平面内,点的左右或上下平移与点的坐标变化之间的关系;点平移变化后的坐标;
教
学
目
标
知识
与
技能
1.弄清坐标平面内,点的左右或上下平移与点的坐标变化之间的关系; 2.会写出点平移变化后的坐标;
3.由点的平移情况,能判断点的坐标变化。
过程
与
方法
1.通过在直角坐标系中对图形平移的研究探索,培养学生用坐标解决问题的能
力和动手操作能力;
2.通过在直角坐标系中对图形平移的研究,使学生体会到平面直角坐标系的应用,体验数学活动充满创造与探索
情感 态度
价值观
培养探究的兴趣和归纳概括的能力,发展学生的形象思维能力,和数形结合的意识.
教学
重点
与
难点
重点
坐标变化与图形平移的关系
难点
坐标变化与图形平移的关系运用
媒 体教 具
课时
一课时
教 学 过 程
修改栏
教学内容
师生互动
一、导入新课
上节课我们学习了用坐标表示地理位置,体现了直角坐标系在实际中的应用,本节课我们研究直角坐标系的另一个应用——用坐标表示平移。.
二、图形的平移与图形上点的变化规律
首先我们研究点的平移规律。
如图,〔投影1〕(1)将点A(-2,-3)向右平移5个单位长度,得到点A1,在图上标出它的坐标,点A的坐标发生了什么变化?把点A向上平移4个单位长度呢?
将点A向右平移5个单位长度,横坐标增加了5个单位长度,纵坐标不变;将点A向上平移4个单位长度,纵坐标增加了4个单位长度,横坐标不变.
(2)把点A向左或向下平移4个单位长度,点A的坐标发生了什么变化?
将点A向左平移4个单位长度,横坐标减少了4个单位长度,纵坐标不变;将点A向下平移4个单位长度,纵坐标减少了4个单位长度,横坐标不变.
从点A的平移变化中,你知道在什么情况下,坐标不变吗?在什么情况下,坐标增加或减少吗?
将点向左右平移纵坐标不变,向上下平移横坐标不变;将点向右或向上平移几个单位长度,横坐标或纵坐标就增加几个单位长度;向左或向下平移几个单位长度,横坐标或纵坐标就减少几个单位长度。
简单地表示为
点(x,y)
点(x+a,y)
向右平移a个单位长度
点(x,y)
点(x-a,y)
向左平移a个单位长度
点(x,y)
点(x,y+b)
向上平移a个单位长度
点(x,y)
点(x,y-b )
向下平移a个单位长度
再找几个点,对他们进行平移,观察他们的坐标是否按你发现的规律变化?
三、图形上点的变化与图形平移的规律
对一个图形进行平移,就是对这个图形上所有点的平移,因而这个图形上所有点的坐标都要发生相应的变化;反过来,从图形上的点的坐标的某种变化,我们也可以看出对这个图形进行了怎样的平移.
〔投影3〕例 如图(1),三角形ABC三个顶点坐标分别是A(4,3),B(3,1),C(1,2).
(1)将三角形ABC三个顶点的横坐标都减去6,纵坐标不变,分别得到点A1、B1、C1,依次连接A1、B1、C1各点,所得三角形A1B1C1与三角形ABC的大小、形状和位置上有什么关系?
(2)将三角形ABC三个顶点的纵坐标都减去5,横坐标不变,分别得到点A2、B2、C2,依次连接A2、B2、C2各点,所得三角形A2B2C2与三角形ABC的大小、形状和位置上有什么关系?
解:如图(2),所得三角形A1B1C1与三角形ABC的大小、形状完全相同,三角形A1B1C1可以看作将三角形ABC向左平移6个单位长度得到.类似地,三角形A2B2C2与三角形ABC的大小、形状完全相同,它可以看作将三角形ABC向下平移5个单位长度得到.
思考:〔投影4〕
(1)如果将这个问题中的“横坐标都减去6”“纵坐标都减去5”相应的变为“横坐标都加3”“纵坐标都加2”,分别能得出什么结论?画出得到的图形。
(2)如果将三角形ABC三个顶点的横坐标都减去6,同时纵坐标都减去5,能得到什么结论?画出得到的图形。
归纳上面的作图与分析,你能得到什么结论?
在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,得到的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,得到的新图形就是把原图形向上(或下)平移a个单位长度。
简单地表示为〔投影5〕
点(x+a,y)
图形向右平移a个单位长度
点(x-a,y)
图形向左平移a个单位长度
点(x,y+b)
图形向上平移a个单位长度度
点(x,y-b )
图形向下平移a个单位长度
四、课堂练习
第53面练习.
五、课堂小结
对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;从图形上的点的坐标的某种变化,我们也可以看出对这个图形进行了怎样的平移.
图形的平移与图形上的点的坐标的变化有什么规律?
复习平移的概念,为新知识作铺垫,使得课程自然地过渡到新课题的学习中去。
从学生已有的数学知识出发,建立新旧知识之间的联系,有利于学生获得新的知识和技能。
学生以小组合作方式进行上机实验操作,利用几何画板,寻找点在上、下、左、右平移的过程中其坐标的变化规律。
在教师的指导下,学生通过画图、操作、合作交流等实践活动,经历从特殊到一般,由具体到抽象的探索过程,最终探索出点左右平移和上下平移的坐标变化规律,这样,让学生在独立思考的基础上,参与对数学问题的讨论,锻炼学生的表达能力,培养学生的合作意识。
让学生在独立思考前提下进行小组活动,这样能使每个学生都能发挥自己的作用,每个学生都有表达和倾听的机会,每个人的价值作用都能显现出来,在这个过程,学优生得到了锻练,而学困生也在互补、互动中学到了知识,促进了发展.
在练习中,学生逐渐联想到用坐标表示图形平移时,往往通过某些特殊点的平移来解决,加强了学生对知识点间相互联系的认识。
作业布置
79页4、5、6题
教 学反 思
展开阅读全文