收藏 分销(赏)

九年级数学上册 21.3 二次根式的加减教案 (新版)华东师大版-(新版)华东师大版初中九年级上册数学教案.doc

上传人:s4****5z 文档编号:7404719 上传时间:2025-01-02 格式:DOC 页数:7 大小:148.50KB
下载 相关 举报
九年级数学上册 21.3 二次根式的加减教案 (新版)华东师大版-(新版)华东师大版初中九年级上册数学教案.doc_第1页
第1页 / 共7页
九年级数学上册 21.3 二次根式的加减教案 (新版)华东师大版-(新版)华东师大版初中九年级上册数学教案.doc_第2页
第2页 / 共7页
九年级数学上册 21.3 二次根式的加减教案 (新版)华东师大版-(新版)华东师大版初中九年级上册数学教案.doc_第3页
第3页 / 共7页
九年级数学上册 21.3 二次根式的加减教案 (新版)华东师大版-(新版)华东师大版初中九年级上册数学教案.doc_第4页
第4页 / 共7页
九年级数学上册 21.3 二次根式的加减教案 (新版)华东师大版-(新版)华东师大版初中九年级上册数学教案.doc_第5页
第5页 / 共7页
点击查看更多>>
资源描述

1、二次根式的加减教学媒体多媒体教学目标知识技能1.知道在有理数范围内成立的运算律在实数范围内仍然成立.2.能熟练将二次根式化简成最简二次根式.3.会运用二次根式加减法法则进行二次根式的加减运算.过程方法1.类比整式加减得到二次根式加减的方法,二者都是系数的加减运算.2.在学习过程中体会有理数、整式、二次根式运算之间的联系,感受数的扩充过程中运算性质和运算律的一致性以及数式通性.情感态度学生温故知新,渗透类比思想,培养自主学习意识.教学重点二次根式加减法运算方法教学难点二次根式的化简,合并被开方数相同的最简二次根式教学过程设计教学程序及教学内容师生行为设计意图一、复习引入导语设计:上节课学习了二次

2、根式的乘除法,这节课学习二次根式的加减法运算.二、探究新知(一)二次根式加减法法则活动1、类比计算,说明理由 2+3 ; . 2-3 ; . ; 思考:(1)在有理数范围内成立的运算律,在实数范围内能否继续使用?(2)二次根式的加减运算与整式的加减运算相同之处是什么? (3) 什么样的二次根式能够合并?(4)模仿整式的加减运算怎样进行二次根式的加减运算?活动2、给出二次根式的加减法法则分析法则:二次根式加减时,先将非最简二次根式化为最简二次根式,再逆用乘法分配律将被开方数相同的二次根式进行合并.被开方数不同的最简二次根式不能合并,作为最后结果中的部分.练习:课本例1,之后补充 (3) (4)课

3、本例2,之后补充 分析说明:中补充(3)结果为负,(4)含分数线,作为例1,例2的过渡。中补充括号前是负号的.(二)二次根式加减的应用1.课本引例分析:这个实际问题的解决方法可能不同,还可以先估算两个正方形的边长,再把它们的和与木板的长比较.2.课本例3分析:利用勾股定理解决实际问题,运用二次根式的加减进行计算,计算的最后一步取近似值,使结果更精确.三、课堂训练完成课本练习.补充:1.下列各组二次根式中,化简后被开方式相同的是()A. B. C. D.2.二次根式的计算为什么先学乘除,后学加减?还有哪块知识也是如此?四、小结归纳1.进行二次根式加减运算的一般步骤.2.二次根式的熟练化简.2.二

4、次根式加减的实际应用.五、作业设计必做:P17:1、2、3选做:5补充作业:计算:(1);(2);(3);(4);(5);(6);(7);(8)点题,板书课题.学生计算,观察对比,类比整式加减知识尝试计算教师组织学生小组交流,进行讨论.结合探究内容师生总结学生板演,并说明每一步的依据,然后师生订正.让学生认真审题,分析,并阐述,然后师生交流,学生进行计算.学生独立完成练习,巩固新知,师生订正引导学生先观察、分析,找学生说明解题思路,解题后养成说明理由的反思习惯.指导学生交流,教师总结让学生尝试经历从已知到未知的迁移,感受数式通性.为总结二次根式的加减法法则做铺垫更好地理解和运用法则初步进行计算

5、,并强化去括号后的符号变化感受二次根式加减的实际应用熟练计算和解题正确化简二次根式纳入知识系统教 学 反 思教学时间课题21.2二次根式的加减(第2课时)课型新授教学媒体多媒体教学目标知识技能在有理数的混合运算及整式的混合运算的基础上,使学生了解二次根式的混合运算与以前所学知识的关系,在比较中求得方法,并能熟练地进行二次根式的混合运算过程方法1.对二次根式的混合运算与整式的混合运算及有理数的混合运算作比较,注意运算的顺序及运算律在计算过程中的作用并感受数的扩充过程中运算性质和运算律的一致性以及数式通性.2. 在运算中运用多项式的乘法法则和整式的乘法公式,体会二次根式的运算与整式的运算的联系.情

6、感态度培养学生的类比运用意识教学重点混合运算的法则,运算律的合理使用教学难点灵活运用运算律、乘法公式等技巧,使计算简便教学过程设计教学程序及教学内容师生行为设计意图一、复习引入导语设计:到目前为止,我们已经学习了二次根式的乘除、加减运算,这节课来学习二次根式的混合运算.二、探究新知(一)二次根式混合运算法则活动1、类比计算,说明理由 (2+3b) ; ( ) (2+3b)(-b); (3b-42 ) ; 思考:(1)在有理数范围内成立的运算律,在实数范围内能否继续使用?(2)二次根式的混合运算与整式的混合运算相同之处是什么?(3)左边式子中的字母、b可以表示二次根式吗? (4)模仿整式的混合运

7、算怎样进行二次根式的混合运算?活动2、给出二次根式的混合运算的一般步骤.分析法则:(1)进行二次根式混合运算时,运算顺序与实数运算类似,先算乘方,再算乘除,最后算加减,有括号的先算括号里面的(或先去掉括号).(2)对于二次根式混合运算,原来学过的所有运算律、运算法则仍然适用,整式、分式的运算法则仍然适用。(3)有括号的二次根式混合运算,去掉括号是最关键的一步.练习:课本例4,之后补充 (3) 课本例5,之后补充 分析说明:中补充(3)是不能除尽(含分数线)的类型。中补充完全平方公式应用.归纳:二次根式混合运算时,乘法公式仍然适用,仔细观察式子的特征,灵活运用完全平方公式、平方差公式来简化运算.

8、(二)二次根式混合运算的应用1.若x=,则x2+x+1= 2.已知,求;的值.3.如图,四边形ABCD中,ABBC,ADAB,AB=1,BC=CD=2,求四边形ABCD的面 积. 三、课堂训练完成课本练习.补充:1.海伦秦九韶公式:如果一个三角形的三边长分别是,b,c,设=, 则三角形的面积为S= 公式运用:在中,BC=4,AC=5,AB=6,求的面积。四、小结归纳1.进行二次根式混合运算的一般步骤.2.二次根式混合运算时,仔细观察式子的特征,灵活运用运算法则、运算律、公式来简化运算.2.二次根式混合运算的应用.五、作业设计必做: P18:4、6、7选做: P18:8、91.已知,求的近似值.2.如图21.3-3在平行四边形ABCD中,得DEAB,E点在AB上,DE=AE=EB=,求平行四边形ABCD的周长.点题,板书课题.学生计算,观察对比,类比整式混合运算知识尝试计算教师组织学生小组交流,进行讨论.结合探究内容师生总结学生板演,并说明每一步的依据,然后师生订正.引导学生先观察、分析,找学生说明解题思路,解题后养成说明理由的反思习惯.学生独立完成练习,巩固新知,师生订正指导学生交流,教师总结让学生尝试经历从已知到未知的迁移,感受式数通性.为总结二次根式的混合运算法则做铺垫更好地理解和运用法则初步进行计算感受二次根式混合运算的应用熟练计算和解题纳入知识系统教 学 反 思

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
  • 秋九年级数学上册 21.3 二次根式的加减教案 (新版)华东师大版-(新版)华东师大版初中九年级上册数学教案.doc秋九年级数学上册 21.3 二次根式的加减教案 (新版)华东师大版-(新版)华东师大版初中九年级上册数学教案.doc
  • 原秋九年级数学上册 21.3《二次根式的加减》教案 (新版)华东师大版-(新版)华东师大版初中九年级上册数学教案.doc原秋九年级数学上册 21.3《二次根式的加减》教案 (新版)华东师大版-(新版)华东师大版初中九年级上册数学教案.doc
  • 秋九年级数学上册 第21章 二次根式 21.3 二次根式的加减教案(新版)华东师大版-(新版)华东师大版初中九年级上册数学教案.doc秋九年级数学上册 第21章 二次根式 21.3 二次根式的加减教案(新版)华东师大版-(新版)华东师大版初中九年级上册数学教案.doc
  • 九年级数学上册 第21章 二次根式21.3 二次根式的加减教案 (新版)华东师大版-(新版)华东师大版初中九年级上册数学教案.doc九年级数学上册 第21章 二次根式21.3 二次根式的加减教案 (新版)华东师大版-(新版)华东师大版初中九年级上册数学教案.doc
  • 九年级数学上册 21.1 二次根式教案 (新版)华东师大版-(新版)华东师大版初中九年级上册数学教案.doc九年级数学上册 21.1 二次根式教案 (新版)华东师大版-(新版)华东师大版初中九年级上册数学教案.doc
  • 九年级数学上册 第21章 二次根式21.3 二次根式的加减说课稿 (新版)华东师大版-(新版)华东师大版初中九年级上册数学教案.doc九年级数学上册 第21章 二次根式21.3 二次根式的加减说课稿 (新版)华东师大版-(新版)华东师大版初中九年级上册数学教案.doc
  • 秋九年级数学上册 21.1 二次根式教案 (新版)华东师大版-(新版)华东师大版初中九年级上册数学教案.doc秋九年级数学上册 21.1 二次根式教案 (新版)华东师大版-(新版)华东师大版初中九年级上册数学教案.doc
  • 九年级数学上册 21.2.1 二次根式的乘法教案 (新版)华东师大版-(新版)华东师大版初中九年级上册数学教案.doc九年级数学上册 21.2.1 二次根式的乘法教案 (新版)华东师大版-(新版)华东师大版初中九年级上册数学教案.doc
  • 九年级数学上册 21.2 二次根式的乘除教案 (新版)华东师大版-(新版)华东师大版初中九年级上册数学教案.doc九年级数学上册 21.2 二次根式的乘除教案 (新版)华东师大版-(新版)华东师大版初中九年级上册数学教案.doc
  • 九年级数学上册 21.2.3 二次根式的除法教案 (新版)华东师大版-(新版)华东师大版初中九年级上册数学教案.doc九年级数学上册 21.2.3 二次根式的除法教案 (新版)华东师大版-(新版)华东师大版初中九年级上册数学教案.doc
  • 搜索标签

    当前位置:首页 > 教育专区 > 其他

    移动网页_全站_页脚广告1

    关于我们      便捷服务       自信AI       AI导航        获赠5币

    ©2010-2025 宁波自信网络信息技术有限公司  版权所有

    客服电话:4008-655-100  投诉/维权电话:4009-655-100

    gongan.png浙公网安备33021202000488号   

    icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

    关注我们 :gzh.png    weibo.png    LOFTER.png 

    客服