1、课题: 23.1 图形的旋转(1)学习水平课堂教学目标 教学要点 (知识、能力、思想、情感)识记理解应用评价掌握熟 练掌 握知识性思想性 一、知识与技能 了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题 二、过程与方法通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题 三、情感态度与价值观 学生在经历了实验探究、知识应用及内化等数学活动中,体验数学的具体、生动、灵活,调动学生学习数学的主动性教学重点旋转及对应点的有关概念及其应用教学难点从活生生的数学中抽出概念教法启发引导探究学法自主合作学习教学准备课件23
2、.1 图形的旋转教学过程及时间教 学 内 容 及 措 施教 师 活 动学 生 活 动 (一)创设情境,导入新课二)合作交流,解读探究三)应用迁移,巩固提高四)总结反思,拓展升华(学生活动)请同学们完成下面各题1将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形2如图,已知ABC和直线L,请你画出ABC关于L的对称图形ABC 3圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗? (口述)老师点评并总结: (1)平移的有关概念及性质 (2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它既有的一些性质 (3)什么叫轴对称图形?我们前面已经复习平移等有关内容,生活中是否还
3、有其它运动变化呢?回答是肯定的,下面我们就来研究 1请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度? (口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心如果从现在到下课时针转了_度,分针转了_度,秒针转了_度 2再看我自制的好像风车风轮的玩具,它可以不停地转动如何转到新的位置?(老师点评略) 3第1、2两题有什么共同特点呢? 共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度 像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角
4、叫做旋转角 如果图形上的点P经过旋转变为点P,那么这两个点叫做这个旋转的对应点 下面我们来运用这些概念来解决一些问题 例1如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到OEF,在这个旋转过程中: (1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A、B分别移动到什么位置? 例2(学生活动)如图,四边形ABCD、四边形EFGH都是边长为1的正方形 (1)这个图案可以看做是哪个“基本图案”通过旋转得到的? (2)请画出旋转中心和旋转角(3)指出,经过旋转,点A、B、C、D分别移到什么位置?(老师点评)(1)可以看做是由正方形ABCD的基本图案通过旋转而得到的(2)画图略(
5、3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H 最后强调,这个旋转中心是固定的,即正方形对角线的交点,但旋转角和对应点都是不唯一的1如教科书图23.1-4,E是正方形ABCD中CD边上任意一点,以点A为中心,把ADE顺时针旋转90,画出旋转后的图形2巩固练习:随堂练习1,2,3教科书第64页1,2,3动手操作:请设计一个绕一点旋转60后能与自身重合的图形.对比平移、轴对称两种变换,旋转变换与另两种变换有哪些共性与区别?1、作图2、作图3、口答1、口答2、口答3、口答解:(1)旋转中心是O,AOE、BOF等都是旋转角 (2)经过旋转,点A和点B分别移动到点E和点F的位置学生独立思考、分析、解答问题作 业A层次教科书习题23.1第14、9题 B层次 节节高第一阶C层次节节高第二阶 教 学反思