1、1.2.4 绝对值一、教学目标知识与技能1. 使学生初步理解绝对值的概念2. 明确绝对值的代数定义和几何意义;会求一个已知数的绝对值;会在已知一个数的绝对值条件下求这个数过程与方法培养学生用数形结合思想解决问题的能力,渗透分类讨论的数学思想情感态度和价值观通过解决实际问题,让学生对数学产生兴趣二、教学重点与难点重点:让学生掌握求一个已知数的绝对值及正确理解绝对值的概念难点:对绝对值的几何意义、代数定义的导出、对“负数的绝对值是它的相反数”的理解三、教学方法采用引导发现法,辅之以讲授,学生讨论,力求体现“教为主导,学为主体”的教学要求,注意创设问题情境,使学生自得知识,自觅规律。四、学法指导主要
2、采取课前预习独立思考、教师讲解和小组合作相结合的学习方法,选用以观察探索为主、让学生主动学习五、教学准备多媒体课件六、教学过程(一)复习引入:1在数轴上分别标出5,3.5,0及它们的相反数所对应的点。2在数轴上找出与原点距离等于6的点。3相反数是怎样定义的?引导学生从代数与几何两方面的特点出发回答相反数的定义。从几何方面可以说在数轴上原点两旁,离开原点距离相等的两个点所表示的两个数互为相反数;从代数方面说只有符号不同的两个数互为相反数。那么互为相反数的两个数有什么特征相同呢?由此引入新课,归纳出绝对值的定义。(二)概念导出:1发现、总结绝对值的定义:我们把在数轴上表示数a的点与原点的距离叫做数
3、a的绝对值( absolute value )。记作|a|。例如,在数轴上表示数6与表示数6的点与原点的距离都是6,所以6和6的绝对值都是6,记作|6|=|6|=6。同样可知|4|=4,|+1.7|=1.7。2试一试:你能从中发现什么规律? 由绝对值的意义,我们可以知道:(1)|+2|= ,= ,|+8.2|= ; (2)|0|= ;(3)|3|= ,|0.2|= ,|8.2|= 。概括:通过对具体数的绝对值的讨论,并注意观察在原点右边的点表示的数(正数)的绝对值有什么特点?在原点左边的点表示的数(负数)的绝对值又有什么特点?由学生分类讨论,归纳出数a的绝对值的一般规律: 1. 一个正数的绝对
4、值是它本身;2. 0的绝对值是0;3. 一个负数的绝对值是它的相反数。即:若a0,则|a|=a; 若a0,则|a|=a;若a=0,则|a|=0; 或写成:。3绝对值的非负性:由绝对值的定义可知:不论有理数a取何值,它的绝对值总是正数或0(通常也称非负数),绝对值具有非负性,即|a|0。(三)巩固新知4例题;例1:求下列各数的绝对值:,4.75,10.5。 解:=;=;|4.75|=4.75;|10.5|=10.5。例2: 化简:(1); (2)。解:(1) ; (2) 。例3:计算:(1)|0.32|+|0.3|;(2)|4.2|4.2|;(3)|()。分析:求一个数的绝对值必须先判断这个数是正数还是负数,然后由绝对值的性质得到。在(3)中要注意区分绝对值符号与括号的不同含义。解答:(1)0.62; (2)0; (3)。(四)畅所欲言对自己说,你有什么收获?对老师说,你有什么疑惑?对同学说,你有什么温馨提示?引导学生回顾本节课,谈自己的体会和收获,同时小结本节所学(五)布置作业P14 第2、3题(六)板书设计1、绝对值2、