1、数学选修1-2导学案-复数3-1 数系的扩充和复数的概念学习目标:1、了解引进复数的必要性;理解并掌握虚数的单位i2、理解并掌握虚数单位与实数进行四则运算的规律3、理解并掌握复数的有关概念(复数集、代数形式、虚数、纯虚数、实部、虚部) 理解并掌握复数相等的有关概念学习重点:复数的概念,虚数单位i,复数的分类(实数、虚数、纯虚数)和复数相等等概念是本节课的教学重点.学习难点:虚数单位i的引进及复数的概念是本节课的教学难点.复数的概念是在引入虚数单位i并同时规定了它的两条性质之后,自然地得出的.在规定i的第二条性质时,原有的加、乘运算律仍然成立自主学习一、知识回顾:数的概念是从实践中产生和发展起来
2、的 ,由于计数的需要,就产生了1,2及表示“没有”的数0.自然数的全体构成自然数集N为了解决测量、分配中遇到的将某些量进行等分的问题,人们引进了分数;为了表示各种具有相反意义的量以及满足记数的需要,人们又引进了负数.这样就把数集扩充到有理数集Q.显然NQ.如果把自然数集(含正整数和0)与负整数集合并在一起,构成整数集Z,则有ZQ、NZ.如果把整数看作分母为1的分数,那么有理数集实际上就是分数集有些量与量之间的比值,例如用正方形的边长去度量它的对角线所得的结果,无法用有理数表示,为了解决这个矛盾,人们又引进了无理数.所谓无理数,就是无限不循环小数.有理数集与无理数集合并在一起,构成实数集R.因为
3、有理数都可看作循环小数(包括整数、有限小数),无理数都是无限不循环小数,所以实数集实际上就是小数集因生产和科学发展的需要而逐步扩充,数集的每一次扩充,对数学学科本身来说,也解决了在原有数集中某种运算不是永远可以实施的矛盾,分数解决了在整数集中不能整除的矛盾,负数解决了在正有理数集中不够减的矛盾,无理数解决了开方开不尽的矛盾.但是,数集扩到实数集R以后,像x2=1这样的方程还是无解的,因为没有一个实数的平方等于1.由于解方程的需要,人们引入了一个新数,叫做虚数单位.并由此产生的了复数二、新课研究:1、虚数单位:(1)它的平方等于-1,即; (2)实数可以与它进行四则运算,进行四则运算时,原有加、
4、乘运算律仍然成立.2. 与1的关系: 就是1的一个平方根,即方程x2=1的一个根,方程x2=1的另一个根是!2、 的周期性:4n+1=i, 4n+2=-1, 4n+3=-i, 4n=13、复数的定义:形如的数叫复数,叫复数的实部,叫复数的虚部全体复数所成的集合叫做复数集,用字母C表示*4、复数的代数形式: 复数通常用字母z表示,即,把复数表示成a+bi的形式,叫做复数的代数形式5、复数与实数、虚数、纯虚数及0的关系:对于复数,当且仅当b=0时,复数a+bi(a、bR)是实数a;当b0时,复数z=a+bi叫做虚数;当a=0且b0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0.6、复数
5、集与其它数集之间的关系:NZQRC.7、两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等这就是说,如果a,b,c,dR,那么a+bi=c+dia=c,b=d复数相等的定义是求复数值,在复数集中解方程的重要依据一般地,两个复数只能说相等或不相等,而不能比较大小.如3+5i与4+3i不能比较大小.现有一个命题:“任何两个复数都不能比较大小”对吗?不对如果两个复数都是实数,就可以比较大小只有当两个复数不全是实数时才不能比较大小例题讲解例1 请说出复数的实部和虚部,有没有纯虚数?答:它们都是虚数,它们的实部分别是2,3,0,;虚部分别是3,;i是纯虚数.例2 复数2i+
6、3.14的实部和虚部是什么?答:实部是3.14,虚部是2.易错为:实部是2,虚部是3.14!例3 实数m取什么数值时,复数z=m+1+(m1)i是:(1)实数? (2)虚数? (3)纯虚数?分析因为mR,所以m+1,m1都是实数,由复数z=a+bi是实数、虚数和纯虚数的条件可以确定m的值.解:(1)当m1=0,即m=1时,复数z是实数;(2)当m10,即m1时,复数z是虚数;(3)当m+1=0,且m10时,即m=1时,复数z 是纯虚数.例4已知(2x1)+i=y(3y)i,其中x,yR,求x与y.解:根据复数相等的定义,得方程组,所以x=,y=4课堂巩固1、设集合C=复数,A=实数,B=纯虚数
7、,若全集S=C,则下列结论正确的是( )A.AB=C B. A=B C.AB= D.BB=C2、复数(2x2+5x+2)+(x2+x2)i为虚数,则实数x满足( )A.x= B.x=2或 C.x2 D.x1且x23、复数z1=a+bi,z2=c+di(a、b、c、dR),则z1=z2的充要条件是_.4、已知mR,复数z=+(m2+2m3)i,当m为何值时,(1)zR; (2)z是虚数;(3)z是纯虚数;(4)z=+4i.归纳反思课后探究1、设复数z=log2(m23m3)+ilog2(3m)(mR),如果z是纯虚数,求m的值.2、若方程x2+(m+2i)x+(2+mi)=0至少有一个实数根,试求实数m的值.教师备课学习资料教师备课学习资料教师备课学习资料教师备课学习资料