资源描述
马氏链模型
教学目的:
通过教学,使学生掌握马尔可夫链的基本知识,掌握建立马氏链模型的基本方法,能用马氏链模型解决一些简单的实际问题。
教学重点和难点:
建立马氏链模型的基本思想和基本步骤。
教学内容:
马尔可夫预测法是应用概率论中马尔可夫链(Markov chain)的理论和方法来研究分析时间序列的变化规律,并由此预测其未来变化趋势的一种预测技术.这种技术已在市场预测分析和市场管理决策中得到广泛应用,近年来逐步被应用于卫生事业管理和卫生经济研究中.下面扼要介绍马尔可夫链的基本原理以及运用原理去进行市场预测的基本方法.
(1)马尔可夫链的基本原理
我们知道,要描述某种特定时期的随机现象如某种药品在未来某时期的销售情况,比如说第n季度是畅销还是滞销,用一个随机变量Xn便可以了,但要描述未来所有时期的情况,则需要一系列的随机变量 X1,X2,…,Xn,….称{ Xt,t∈T ,T是参数集}为随机过程,{ Xt }的取值集合称为状态空间.若随机过程{ Xn }的参数为非负整数, Xn 为离散随机变量,且{ Xn }具有无后效性(或称马尔可夫性),则称这一随机过程为马尔可夫链(简称马氏链).所谓无后效性,直观地说,就是如果把{ Xn }的参数n看作时间的话,那么它在将来取什么值只与它现在的取值有关,而与过去取什么值无关.
对具有N个状态的马氏链,描述它的概率性质,最重要的是它在n时刻处于状态i下一时刻转移到状态j的一步转移概率:
若假定上式与n无关,即,则可记为(此时,称过程是平稳的),并记
(1)
称为转移概率矩阵.
例1 设某抗病毒药销售情况分为“畅销”和“滞销”两种,以“1”代表“畅销”,“2”代表“滞销”.以Xn表示第n个季度的销售状态,则Xn可以取值1或2.若未来的抗病毒药销售状态,只与现在的市场状态有关,而与以前的市场状态无关,则抗病毒药的市场状态{ Xn ,n≥1}就构成一个马氏链.设
, , ,
则转移概率矩阵为
这里表示连续畅销的可能性,表示由畅销转入滞销的可能性,表示由滞销转入畅销的可能性,表示连续滞销的可能性.这种状态转移的情况也可以用状态转移图来表示.
转移概率矩阵具有下述性质:
(1).即每个元素非负.
(2).即矩阵每行的元素和等于1.
如果我们考虑状态多次转移的情况,则有过程在n时刻处于状态i,n+k时刻转移到状态j的k步转移概率:
同样由平稳性,上式概率与n无关,可写成.记
(2)
称为k步转移概率矩阵.其中具有性质:
; .
例2 求例1中抗病毒药的销售状态{Xn}的二步转移矩阵P (2).
解 由例1知,其一步转移矩阵为:
若本季度抗病毒药的销售处于畅销(即处于状态“1” ),那么,经过两个季度以后,就经历了两次转移,可能转移到状态“2”,也可能保持状态“1”,这种转移的可能性的大小就是二步转移概率.
表示抗病毒药的销售由畅销经两次转移后仍然是畅销的概率,由概率计算的全概率公式
同样可算得由畅销经两次转移到滞销的概率
由滞销经两次转移到畅销和滞销的概率分别为
所以二步转移矩阵为
由例2的计算过程知
一般地有,若为一步转移矩阵,则k步转移矩阵
(3)
(2)状态转移概率的估算
在马尔可夫预测方法中,系统状态的转移概率的估算非常重要.估算的方法通常有两种:一是主观概率法,它是根据人们长期积累的经验以及对预测事件的了解,对事件发生的可能性大小的一种主观估计,这种方法一般是在缺乏历史统计资料或资料不全的情况下使用.二是统计估算法,现通过实例介绍如下.
例3 记录了某抗病毒药的6年24个季度的销售情况,得到表1.试求其销售状态的转移概率矩阵.
表1 某抗病毒药24个季度的销售情况
季度
销售状态
季度
销售状态
季度
销售状态
季度
销售状态
1
1 (畅销)
7
1(畅销)
13
1(畅销)
19
2(滞销)
2
1(畅销)
8
1(畅销)
14
1(畅销)
20
1(畅销)
3
2(滞销)
9
1(畅销)
15
2(滞销)
21
2(滞销)
4
1(畅销)
10
2(滞销)
16
2(滞销)
22
1(畅销)
5
2(滞销)
11
1(畅销)
17
1(畅销)
23
1(畅销)
6
2(滞销)
12
2(滞销)
18
1(畅销)
24
1(畅销)
分析表中的数据,其中有15个季度畅销,9个季度滞销,连续出现畅销和由畅销转入滞销以及由滞销转入畅销的次数均为7,连续滞销的次数为2.由此,可得到下面的市场状态转移情况表(表2).
表2 市场状态转移情况表
市
场
状
态
次 数
市 场 状 态
下季度药品所处的市场状态
1(畅销)
2(滞销)
本季度药品所
1(畅销)
7
7
处的市场状态
2(滞销)
7
2
现计算转移概率.以频率代替概率,可得连续畅销的概率:
分母中的数为15减1是因为第24季度是畅销,无后续记录,需减1.
同样得由畅销转入滞销的概率:
滞销转入畅销的概率:
连续滞销的概率:
综上,得销售状态转移概率矩阵为:
从上面的计算过程知,所求转移概率矩阵P的元素其实可以直接通过表2中的数字计算而得到,即将表中数分别除以该数所在行的数字和便可:
由此,推广到一般情况,我们得到估计转移概率的方法:假定系统有m种状态S1,S2,…,Sm,根据系统的状态转移的历史记录,得到表3的统计表格,以表示系统从状态i转移到状态j的转移概率估计值,则由表3的数据计算估计值的公式如下:
表3 系统状态转移情况表
状
态
次 数
状 态
系统下步所处状态
S1
S2
…
Sm
系
统
S1
n11
n12
…
n1m
本
步
S2
n21
n22
…
n2m
所
处
…
…
…
…
…
状
态
Sm
n m1
n m2
…
n mm
(4)
例4 设某系统有3种状态S1,S2和S3,系统状态的转移情况见表4.试求系统的状态转移概率矩阵.
表4 某系统状态转移情况表
状
态
次 数
状 态
系统下步所处状态
S1
S2
S3
S1
6
15
9
系统的本步
所处状态
S2
4
14
2
S3
3
3
4
解 由公式(4),得
,,
,,
, ,
故系统的转移概率矩为
(3)带利润的马氏链
在马氏链模型中,随着时间的推移,系统的状态可能发生转移,这种转移常常会引起某种经济指标的变化.如抗病毒药的销售状态有畅销和滞销两种,在时间变化过程中,有时呈连续畅销或连续滞销,有时由畅销转为滞销或由滞销转为畅销,每次转移不是盈利就是亏本.假定连续畅销时盈r11元,连续滞销时亏本r22元,由畅销转为滞销盈利r12元,由滞销转为畅销盈利r21元,这种随着系统的状态转移,赋予一定利润的马氏链,称为有利润的马氏链.对于一般的具有转移矩阵
的马氏链,当系统由i转移到j时,赋予利润rij(i,j=1,2,…,N),则称
(5)
为系统的利润矩阵,rij >0称为盈利,rij <0称为亏本,rij = 0称为不亏不盈.
随着时间的变化,系统的状态不断地转移,从而可得到一系列利润,由于状态的转移是随机的,因而一系列的利润是随机变量,其概率关系由马氏链的转移概率决定.例如从抗病毒药的销售状态的转移矩阵,得到一步利润随机变量、的概率分布分别为:
r11
r12
r21
r22
概 率
p11
p12
概 率
p21
p22
其中 p11+ p12 = 1 ,p21+ p22 = 1.
如果药品处于畅销阶段,即销售状态为i =1,我们想知道,经过n个季度以后,期望获得的利润是多少?为此,引入一些计算公式.
首先,定义为抗病毒药现在处于,经过步转移之后的总期望利润,则
一步转移的期望利润为:
其中是随机变量的数学期望.
二步转移的期望利润为:
其中随机变量(称为二步利润随机变量)的分布为:
例如,若
,
则抗病毒药销售的一步利润随机变量:
9
3
3
-7
概 率
0.5
0.5
概 率
0.4
0.6
抗病毒药畅销和滞销时的一步转移的期望利润分别为:
二步利润随机变量为:
9+6
3-3
3+6
-7-3
概 率
0.5
0.5
概 率
0.4
0.6
抗病毒药畅销和滞销时的二步转移的期望利润分别为:
一般地定义k步转移利润随机变量的分布为:
则系统处于状态i经过k步转移后所得的期望利润的递推计算式为:
(6)
当k=1时,规定边界条件.
称一步转移的期望利润为即时的期望利润,并记
.
(4)市场占有率预测
利用马尔可夫链,我们可以进行市场占有率的预测.例如,预测A、B、C三个厂家生产的某种抗病毒药在未来的市场占有情况,其具体步骤如下:
第一步 进行市场调查.主要调查以下两件事:
(1)目前的市场占有情况.如在购买该药的总共1000家对象(购买力相当的医院、药店等)中,买A、B、C三药厂的各有400家、300家、300家,那么A、B、C三药厂目前的市场占有份额分别为:40%、30%、30%.称(0.4,0.3,0.3)为目前市场的占有分布或称初始分布.
(2)查清使用对象的流动情况.流动情况的调查可通过发放信息调查表来了解顾客以往的资料或将来的购买意向,也可从下一时期的订货单得出.如从定货单得表5.
表5 顾客订货情况表
下季度订货情况
合计
来
自
A
B
C
A
160
120
120
400
B
180
90
30
300
C
180
30
90
300
合计
520
240
240
1000
第二步 建立数学模型.
假定在未来的时期内,顾客相同间隔时间的流动情况不因时期的不同而发生变化,以1、2、3分别表示顾客买A、B、C三厂家的药这三个状态,以季度为模型的步长(即转移一步所需的时间),那么根据表5,我们可以得模型的转移概率矩阵:
矩阵中的第一行(0.4,0.3,0.3)表示目前是A厂的顾客下季度有40%仍买A厂的药,转为买B厂和C厂的各有30%.同样,第二行、第三行分别表示目前是B厂和C厂的顾客下季度的流向.
由P我们可以计算任意的k步转移矩阵,如三步转移矩阵:
从这个矩阵的各行可知三个季度以后各厂家顾客的流动情况.如从第二行(0.504,0.252,0.244)知,B厂的顾客三个季度后有50.4%转向买A厂的药,25.2%仍买B厂的,24.4%转向买C厂的药.
第三步 进行预测.
设表示预测对象k季度以后的市场占有率,初始分布则为,市场占有率的预测模型为
(7)
现在,由第一步,我们有,由此,我们可预测任意时期A、B、C三厂家的市场占有率.例如,三个季度以后的预测值为:
大致上,A 厂占有一半的市场,B厂、C厂各占四分之一.
模型(7)可推广到N个状态的情形:
(8)
如果我们按公式(7)继续逐步求A、B、C三家的市场占有率,会发现,当k大到一定的程度,S (k) 将不会有多少改变,即有稳定的市场占有率,设其稳定值为,满足.
事实上,如果市场的顾客流动趋向长期稳定下去,则经过一段时期以后的市场占有率将会出现稳定的平衡状态,即顾客的流动,不会影响市场的占有率,而且这种占有率与初始分布无关.如何求出这种稳定的市场占有率呢?
以A、B、C三家的情况为例,当市场出现平衡状态时,从公式(7)可得方程S = S P,即
由此得
经整理,并加上条件,得
上方程组是三个变量四个方程的方程组,在前三个方程中只有二个是独立的,任意删去一个,从剩下的三个方程中,可求出唯一解:
, ,
这就是A、B、C三家的最终市场占有率.
一般N个状态的稳定市场占有率(稳态概率)可通过解方程组
(9)
求得,而(9)的前N个方程中只有N-1个是独立的,可任意删去一个.
(5)期望利润预测
企业追逐市场占有率的真正目的是使利润增加,因此,竞争各方无论是为了夺回市场份额,还是为了保住或者提高市场份额,在制订对策时都必须对期望利润进行预测.
预测主要分两步进行:①市场统计调查.首先调查销路的变化情况,即查清由畅销到滞销或由滞销到畅销,连续畅销或连续滞销的可能性是多少.其次统计出由于销路的变化,获得的利润和亏损情况.②建立数学模型,列出预测公式进行预测.
例如,通过市场调查,我们得到如下的销路转移表(表6)和利润变化表(表7).由此,我们来建立数学模型.
表6 销路转移表
状
态
j
可 能 性
状 态 i
畅销
滞销
1
2
1
畅销
0.5
0.5
2
滞销
0.4
0.6
销路转移表说明连续畅销的可能性为50%,由畅销转入滞销的可能性也是50%,由滞销到畅销为40%,连续滞销的可能性为60%.利润表说明的是连续畅销获利900万元,由畅销到滞销或由滞销到畅销均获利300万元,连续滞销则亏损700万元.从而得到销售状态的转移矩阵P和利润矩阵R分别为:
表7 利润变化表(单位:百万元)
状
态
j
利 润
状 态 i
畅销
滞销
1
2
1
畅销
9
3
2
滞销
3
-7
P和R便构成一个有利润的马氏链.由前面所述的基本原理及公式(6)得下面的预测公式:
即时期利润:
k步以后的期望利润:
将调查数据代入上公式则可预测各时期的期望利润值.如:
由此可知,当本季度处于畅销时,在下一季度可以期望获得利润600万元;当本季度处于滞销时,下一季度将期望亏损300万元.
同样算得: ,
,
由此可预测本季度处于畅销时,两个季度后可期望获利750万元,三个季度后可期望获利855万元;当本季度处于滞销时,两个季度后将亏损240万元,三个季度后亏损144万元.
(6)应用举例
例5 Markov模型在流行病监测中的应用
Markov模型是用于描述时间和状态都是离散的随机过程的数学模型.应用其理论和方法,可以对疾病发病情况随时间序列的变化规律进行分析和研究,预测疾病的发展变化趋势,为预防和控制疾病提供依据.统计了某市1980年至1995年肾综合征出血热(HFRS)的发病率分别为(单位:1/10万):2.95、6.28、10.28、7.01、7.36、13.78、33.93、35.87、33.40、28.38、30.50、33.79、39.70、30.39、39.70、33.59(引自:李洪杰等. 龙泉市肾综合征出血热发病趋势的预测. 浙江预防医学,1997,02:44).下面进行建模预测.
首先根据资料将发病率划分为四个状态,统计各数据的状态归属及各状态出现的频率(初始概率),得表8和表9.
表8 某市HFRS流行状况
年份
发病率(1/10万)
状态
年份
发病率(1/10万)
状态
1980
2.95
1
1988
33.40
4
1981
6.28
1
1989
28.38
3
1982
10.28
2
1990
30.50
4
1983
7.01
1
1991
33.79
4
1984
7.36
1
1992
39.70
4
1985
13.78
2
1993
30.39
4
1986
33.93
4
1994
39.70
4
1987
35.87
4
1995
33.59
4
表9 各状态取值范围及初始概率
状态
发病率取值范围
初始概率
1
X≤10
4/16
2
10<X≤20
2/16
3
20<X≤30
1/16
4
X>30
9/16
由表8可得各状态的转移频率即状态转移概率的估计值,从而得模型的一步转移概率矩阵:
可认为HFRS下一年的发病率只与当年发病率有关,而与过去的发病率无关,且任意时期的一步转移概率矩阵不变,从而满足无后效性和平稳性的假设,因而可用初始分布为(4/16,2/16,1/16,9/16),转移概率矩阵为P的马氏链模型来预测HFRS发病率未来的情况.
计算多步转移矩阵:
计算极限或解方程,得模型的极限概率分布(稳态分布):(0,0,1/9,8/9).
分析预测:由于95年处于状态4,比较P的第4行的四个数字知,最大,所以预测96年仍处于状态4,即发病率大于30/10万.同样,从二、三、四步转移矩阵知,依然是状态4转入状态4的概率最大,所以预测1996年至1999年该市的HFRS发病率将持续在大于30/10万(高发区)水平,这提醒我们应该对此高度重视,采取相应对策.
如果转移概率矩阵始终不变,从极限分布看,最终HFRS发病率将保持在高发区水平,当然,这应该是不会符合实际情况的,因为随着各方面因素的改变,转移概率矩阵一般也会发生变化.所以Markov模型主要适用于短期预测.
在用Markov模型进行预测的过程中,无后效性和平稳性是最基本的要求,而模型是否合理有效,状态的划分和转移概率矩阵的估算是关键,不同的状态划分可能会得到不同的结果,通常我们根据有关预测对象的专业知识和数据的多少及范围来确定系统状态.
在卫生管理事业中,用Markov模型还可预测医疗器械、药品的市场占有率,药品的期望利润收益等.
习题 在钢琴销售模型中,将存贮策略修改为:
(1)当周末库存量为0或1时,订购,使下周初的库存量达到3架;否则,不订购。建立马氏链模型,计算稳态下失去销售机会的概率,和每周的平均销售量。
(2)当周末库存量为0时,订购量为本周销售量加2架;否则,不订购。建立马氏链模型,计算稳态下失去销售机会的概率,和每周的平均销售量。(钢琴销售模型见姜启源《数学模型》第338页)
展开阅读全文