资源描述
(完整版)简单的逻辑联结词、全称量词与存在量词
03 简单的逻辑联结词、全称量词与存在量词
知识梳理
1.简单的逻辑联结词
(1)命题中的且、或、非叫做逻辑联结词.
(2)命题p∧q、p∨q、非p的真假判断
p
q
p∧q
p∨q
非p
真
真
真
真
假
真
假
假
真
假
假
真
假
真
真
假
假
假
假
真
2。全称量词与存在量词
(1)全称量词:短语“所有的”“任意一个”在逻辑中通常叫做全称量词,用“∀”表示;含有全称量词的命题叫做全称命题.
(2)存在量词:短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,用“∃"表示;含有存在量词的命题叫做特称命题.
(3)含有一个量词的命题的否定
命题
命题的否定
∀x∈M,p(x)
∃x0∈M,非p(x0)
∃x0∈M,p(x0)
∀x∈M,非p(x)
要点整合
1.若p∧q为真,则p,q同为真;
若p∧q为假,则p,q至少有一个为假;
若p∨q为假,则p,q同为假;
若p∨q为真,则p,q至少有一个为真.
2.“p∧q”的否定是“(非p)∨(非q)”;
“p∨q”的否定是“(非p)∧(非q)”.
题型一. 含有一个逻辑联结词命题的真假性
例1。 已知命题p:对任意x∈R,总有2x〉0;q:“x〉1"是“x〉2”的充分不必要条件.则下列命题为真命题的是( )
A.p∧q B.(非p)∧(非q)
C.(非p)∧q D.p∧(非q)
解析: 根据指数函数的图象可知p为真命题.由于“x〉1"是“x〉2”的必要不充分条件,所以q为假命题,所以非q为真命题.逐项检验可知只有p∧(非q)为真命题.故选D.
[答案] D
判断含有一个逻辑联结词命题的真假性的步骤
第一步:先判断命题p与q的真假性,从而得出非p与非q的真假性.
第二步:根据“p∧q"与“p∨q”的真值表进行真假性的判断.
变式1.设命题p:3≥2,q:函数f(x)=x+(x∈R)的最小值为2,则下列命题为假命题的是( )
A.p∨q B.p∨(非q)
C.(非p)∨q D.p∧(非q)
解析:选C.命题p:3≥2是真命题,命题q是假命题,
∴(非p)∨q为假命题,故选C.
变式2.已知命题p:∀x∈R,2x〈3x,命题q:∃x∈R,x2=2-x,若命题(非p)∧q为真命题,则x的值为( )
A.1 B.-1
C.2 D.-2
解析:选D.∵非p:∃x∈R,2x≥3x,要使(非p)∧q为真,
∴非p与q同时为真.由2x≥3x得≥1,
∴x≤0,由x2=2-x得x2+x-2=0,
∴x=1或x=-2,又x≤0,
∴x=-2.
变式3.设p:y=logax(a>0,且a≠1)在(0,+∞)上是减函数;q:曲线y=x2+(2a-3)x+1与x轴有两个不同的交点,若p∨(非q)为假,则a的范围为__________.
解析:∵p∨(非q)为假,∴p假q真.
p为假时,a〉1,
q为真时,(2a-3)2-4>0,即a〈或a〉,
∴a的范围为
(1,+∞)∩
=。
答案:
题型二. 含有一个量词的命题的否定
例2. 命题“∃x0∈(0,+∞),ln x0=x0-1”的否定是( )
A.∀x∈(0,+∞),ln x≠x-1
B.∀x∉(0,+∞),ln x=x-1
C.∃x0∈(0,+∞),ln x0≠x0-1
D.∃x0∉(0,+∞),ln x0=x0-1
解析: 由特称命题的否定为全称命题可知,所求命题的否定为全称命题,则所求命题的否定为∀x∈(0,+∞),ln x≠x-1,故选A。
[答案] A
(1)特称命题与全称命题否定的判断方法:“∃”“∀"相调换,否定结论得命题.对没有量词的要结合命题的含义加上量词,再进行否定;
(2)判定全称命题“∀x∈M,p(x)”是真命题,需要对集合M中的每个元素x,证明p(x)成立;要判断特称命题是真命题,只要在限定集合内至少能找到一个x=x0,使p(x0)成立即可.
变式1.命题p:∃x0∈R,x+2x0+2≤0的否定为( )
A.非p:∃x0∈R,x+2x0+2〉0
B.非p:∀x∈R,x2+2x+2≤0
C.非p:∀x∈R,x2+2x+2>0
D.非p:∃x0∈R,x+2x0+2<0
解析:选C.根据特称命题的否定形式知非p:∀x∈R,x2+2x+2>0,故选C.
变式2.设命题p:任意两个等腰三角形都相似,q:∃x0∈R,x0+|x0|+2=0,则下列结论正确的是 ( )
A.p∨q为真命题 B.(非p)∧q为真命题
C.p∨(非q)为真命题 D.(非p)∧(非q)为假命题
解析:选C。∵p假,非p真;q假,非q真,
∴p∨q为假,(非p)∧q为假,p∨(非q)为真,(非p)∧(非q)为真,故选C。
题型三. 全称命题与特称命题真假性的应用
例3。 已知p:∃x0∈R,mx+1≤0,q:∀x∈R,x2+mx+1>0,若p∨q为假命题,则实数m的取值范围是( )
A.[2,+∞) B.(-∞,-2]
C.(-∞,-2]∪[2,+∞) D.[-2,2]
解析: 依题意知,p,q均为假命题.当p是假命题时,mx2+1>0恒成立,则有m≥0;当q是假命题时,则有Δ=m2-4≥0,m≤-2或m≥2.因此由p,q均为假命题得即m≥2。
[答案] A
根据全称与特称命题的真假性求参数范围的步骤
第一步:对两个简单命题进行真假性判断.
第二步:根据p∧q为真,则p真q真,p∧q为假,则p
与q至少有一个为假,p∨q为真,则p与q至少有一个为真,p∨q为假,则p假q假.
第三步:根据p、q的真假性列出关于参数的关系式,从而求出参数的范围.
变式1.若命题“存在实数x0,使x+ax0+1<0"的否定是真命题,则实数a的取值范围为( )
A.(-∞,-2] B.[-2,2]
C.(-2,2) D.[2,+∞)
解析:选B.因为该命题的否定为:“∀x∈R,x2+ax+1≥0"是真命题,则Δ=a2-4×1×1≤0,
解得-2≤a≤2。故实数a的取值范围是[-2,2].
变式2.(名师原创)若“∀x∈,sin x≤m"是真命题,则实数m的范围为( )
A.[1,+∞) B.(-∞,1]
C。 D.
解析:选A.∵∀x∈,≤sin x≤1。
∴“∀x∈,sin x≤m”为真命题时,m≥1,故选A.
【真题演练】
1.【浙江理数】命题“,使得"的否定形式是( )
A.,使得 B.,使得
C.,使得 D.,使得
【答案】D
【解析】的否定是,的否定是,的否定是.故选D.
2.【高考新课标1,理3】设命题:,则为( )
(A) (B)
(C) (D)
【答案】C
【解析】:,故选C.
3。【高考浙江,理4】命题“且的否定形式是( )
A. 且 B. 或
C。 且 D。 或
【答案】D。
【解析】根据全称命题的否定是特称命题,可知选D。
4。【陕西卷】原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )
A.真,假,真 B.假,假,真
C.真,真,假 D.假,假,假
【答案】B
5。【重庆卷】已知命题p:对任意x∈R,总有2x>0,q:“x〉1"是“x〉2”的充分不必要条件,则下列命题为真命题的是( )
A.p∧q B.非p∧非q
C.非p∧q D.p∧非q
【答案】D
【解析】根据指数函数的图像可知p为真命题.由于“x〉1”是“x〉2”的必要不充分条件,所以q为假命题,所以非q为真命题,所以p∧非q为真命题.
6.【湖北卷】在一次跳伞中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围"可表示为( )
A.(p)∨(q) B.p∨(q)
C.(p)∧(q) D.p∨q
【答案】A “至少一位学员没降落在指定区域”即“甲没降落在指定区域或乙没降落在指定区域”,可知选A.
展开阅读全文