1、高中物理辅导网第一部分 力物体的平衡第一讲 力的处理一、矢量的运算1、加法表达: + = 。名词:为“和矢量”。法则:平行四边形法则。如图1所示。和矢量大小:c = ,其中为和的夹角。和矢量方向:在、之间,和夹角= arcsin2、减法表达: = 。名词:为“被减数矢量”,为“减数矢量”,为“差矢量”。法则:三角形法则。如图2所示。将被减数矢量和减数矢量的起始端平移到一点,然后连接两时量末端,指向被减数时量的时量,即是差矢量。差矢量大小:a = ,其中为和的夹角。差矢量的方向可以用正弦定理求得。一条直线上的矢量运算是平行四边形和三角形法则的特例。例题:已知质点做匀速率圆周运动,半径为R ,周期
2、为T ,求它在T内和在T内的平均加速度大小。解说:如图3所示,A到B点对应T的过程,A到C点对应T的过程。这三点的速度矢量分别设为、和。根据加速度的定义 = 得:= ,= 由于有两处涉及矢量减法,设两个差矢量 = ,= ,根据三角形法则,它们在图3中的大小、方向已绘出(的“三角形”已被拉伸成一条直线)。本题只关心各矢量的大小,显然: = = = ,且: = = , = 2= 所以:= = = ,= = = 。(学生活动)观察与思考:这两个加速度是否相等,匀速率圆周运动是不是匀变速运动?答:否;不是。3、乘法矢量的乘法有两种:叉乘和点乘,和代数的乘法有着质的不同。 叉乘表达: = 名词:称“矢量
3、的叉积”,它是一个新的矢量。叉积的大小:c = absin,其中为和的夹角。意义:的大小对应由和作成的平行四边形的面积。叉积的方向:垂直和确定的平面,并由右手螺旋定则确定方向,如图4所示。显然,但有:= 点乘表达: = c名词:c称“矢量的点积”,它不再是一个矢量,而是一个标量。点积的大小:c = abcos,其中为和的夹角。二、共点力的合成1、平行四边形法则与矢量表达式2、一般平行四边形的合力与分力的求法余弦定理(或分割成Rt)解合力的大小正弦定理解方向三、力的分解1、按效果分解2、按需要正交分解第二讲 物体的平衡一、共点力平衡1、特征:质心无加速度。2、条件: = 0 ,或 = 0 , =
4、 0例题:如图5所示,长为L 、粗细不均匀的横杆被两根轻绳水平悬挂,绳子与水平方向的夹角在图上已标示,求横杆的重心位置。解说:直接用三力共点的知识解题,几何关系比较简单。答案:距棒的左端L/4处。(学生活动)思考:放在斜面上的均质长方体,按实际情况分析受力,斜面的支持力会通过长方体的重心吗?解:将各处的支持力归纳成一个N ,则长方体受三个力(G 、f 、N)必共点,由此推知,N不可能通过长方体的重心。正确受力情形如图6所示(通常的受力图是将受力物体看成一个点,这时,N就过重心了)。答:不会。二、转动平衡1、特征:物体无转动加速度。2、条件:= 0 ,或M+ =M- 如果物体静止,肯定会同时满足
5、两种平衡,因此用两种思路均可解题。3、非共点力的合成大小和方向:遵从一条直线矢量合成法则。作用点:先假定一个等效作用点,然后让所有的平行力对这个作用点的和力矩为零。 第三讲 习题课1、如图7所示,在固定的、倾角为斜面上,有一块可以转动的夹板(不定),夹板和斜面夹着一个质量为m的光滑均质球体,试求:取何值时,夹板对球的弹力最小。解说:法一,平行四边形动态处理。对球体进行受力分析,然后对平行四边形中的矢量G和N1进行平移,使它们构成一个三角形,如图8的左图和中图所示。由于G的大小和方向均不变,而N1的方向不可变,当增大导致N2的方向改变时,N2的变化和N1的方向变化如图8的右图所示。显然,随着增大
6、,N1单调减小,而N2的大小先减小后增大,当N2垂直N1时,N2取极小值,且N2min = Gsin。法二,函数法。看图8的中间图,对这个三角形用正弦定理,有: = ,即:N2 = ,在0到180之间取值,N2的极值讨论是很容易的。答案:当= 90时,甲板的弹力最小。2、把一个重为G的物体用一个水平推力F压在竖直的足够高的墙壁上,F随时间t的变化规律如图9所示,则在t = 0开始物体所受的摩擦力f的变化图线是图10中的哪一个?解说:静力学旨在解决静态问题和准静态过程的问题,但本题是一个例外。物体在竖直方向的运动先加速后减速,平衡方程不再适用。如何避开牛顿第二定律,是本题授课时的难点。静力学的知
7、识,本题在于区分两种摩擦的不同判据。水平方向合力为零,得:支持力N持续增大。物体在运动时,滑动摩擦力f = N ,必持续增大。但物体在静止后静摩擦力f G ,与N没有关系。对运动过程加以分析,物体必有加速和减速两个过程。据物理常识,加速时,f G ,而在减速时f G 。答案:B 。3、如图11所示,一个重量为G的小球套在竖直放置的、半径为R的光滑大环上,另一轻质弹簧的劲度系数为k ,自由长度为L(L2R),一端固定在大圆环的顶点A ,另一端与小球相连。环静止平衡时位于大环上的B点。试求弹簧与竖直方向的夹角。解说:平行四边形的三个矢量总是可以平移到一个三角形中去讨论,解三角形的典型思路有三种:分
8、割成直角三角形(或本来就是直角三角形);利用正、余弦定理;利用力学矢量三角形和某空间位置三角形相似。本题旨在贯彻第三种思路。分析小球受力矢量平移,如图12所示,其中F表示弹簧弹力,N表示大环的支持力。(学生活动)思考:支持力N可不可以沿图12中的反方向?(正交分解看水平方向平衡不可以。)容易判断,图中的灰色矢量三角形和空间位置三角形AOB是相似的,所以: 由胡克定律:F = k(- R) 几何关系:= 2Rcos 解以上三式即可。答案:arccos 。(学生活动)思考:若将弹簧换成劲度系数k较大的弹簧,其它条件不变,则弹簧弹力怎么变?环的支持力怎么变?答:变小;不变。(学生活动)反馈练习:光滑
9、半球固定在水平面上,球心O的正上方有一定滑轮,一根轻绳跨过滑轮将一小球从图13所示的A位置开始缓慢拉至B位置。试判断:在此过程中,绳子的拉力T和球面支持力N怎样变化?解:和上题完全相同。答:T变小,N不变。4、如图14所示,一个半径为R的非均质圆球,其重心不在球心O点,先将它置于水平地面上,平衡时球面上的A点和地面接触;再将它置于倾角为30的粗糙斜面上,平衡时球面上的B点与斜面接触,已知A到B的圆心角也为30。试求球体的重心C到球心O的距离。解说:练习三力共点的应用。根据在平面上的平衡,可知重心C在OA连线上。根据在斜面上的平衡,支持力、重力和静摩擦力共点,可以画出重心的具体位置。几何计算比较
10、简单。答案:R 。(学生活动)反馈练习:静摩擦足够,将长为a 、厚为b的砖块码在倾角为的斜面上,最多能码多少块?解:三力共点知识应用。答: 。4、两根等长的细线,一端拴在同一悬点O上,另一端各系一个小球,两球的质量分别为m1和m2 ,已知两球间存在大小相等、方向相反的斥力而使两线张开一定角度,分别为45和30,如图15所示。则m1 : m2为多少?解说:本题考查正弦定理、或力矩平衡解静力学问题。对两球进行受力分析,并进行矢量平移,如图16所示。首先注意,图16中的灰色三角形是等腰三角形,两底角相等,设为。而且,两球相互作用的斥力方向相反,大小相等,可用同一字母表示,设为F 。对左边的矢量三角形
11、用正弦定理,有: = 同理,对右边的矢量三角形,有: = 解两式即可。答案:1 : 。(学生活动)思考:解本题是否还有其它的方法?答:有将模型看成用轻杆连成的两小球,而将O点看成转轴,两球的重力对O的力矩必然是平衡的。这种方法更直接、简便。应用:若原题中绳长不等,而是l1 :l2 = 3 :2 ,其它条件不变,m1与m2的比值又将是多少?解:此时用共点力平衡更加复杂(多一个正弦定理方程),而用力矩平衡则几乎和“思考”完全相同。答:2 :3 。5、如图17所示,一个半径为R的均质金属球上固定着一根长为L的轻质细杆,细杆的左端用铰链与墙壁相连,球下边垫上一块木板后,细杆恰好水平,而木板下面是光滑的
12、水平面。由于金属球和木板之间有摩擦(已知摩擦因素为),所以要将木板从球下面向右抽出时,至少需要大小为F的水平拉力。试问:现要将木板继续向左插进一些,至少需要多大的水平推力?解说:这是一个典型的力矩平衡的例题。以球和杆为对象,研究其对转轴O的转动平衡,设木板拉出时给球体的摩擦力为f ,支持力为N ,重力为G ,力矩平衡方程为:f R + N(R + L)= G(R + L) 球和板已相对滑动,故:f = N 解可得:f = 再看木板的平衡,F = f 。同理,木板插进去时,球体和木板之间的摩擦f= = F。答案: 。第四讲 摩擦角及其它一、摩擦角1、全反力:接触面给物体的摩擦力与支持力的合力称全
13、反力,一般用R表示,亦称接触反力。2、摩擦角:全反力与支持力的最大夹角称摩擦角,一般用m表示。此时,要么物体已经滑动,必有:m = arctg(为动摩擦因素),称动摩擦力角;要么物体达到最大运动趋势,必有:ms = arctgs(s为静摩擦因素),称静摩擦角。通常处理为m = ms 。3、引入全反力和摩擦角的意义:使分析处理物体受力时更方便、更简捷。二、隔离法与整体法1、隔离法:当物体对象有两个或两个以上时,有必要各个击破,逐个讲每个个体隔离开来分析处理,称隔离法。在处理各隔离方程之间的联系时,应注意相互作用力的大小和方向关系。2、整体法:当各个体均处于平衡状态时,我们可以不顾个体的差异而讲多
14、个对象看成一个整体进行分析处理,称整体法。应用整体法时应注意“系统”、“内力”和“外力”的涵义。三、应用1、物体放在水平面上,用与水平方向成30的力拉物体时,物体匀速前进。若此力大小不变,改为沿水平方向拉物体,物体仍能匀速前进,求物体与水平面之间的动摩擦因素。解说:这是一个能显示摩擦角解题优越性的题目。可以通过不同解法的比较让学生留下深刻印象。法一,正交分解。(学生分析受力列方程得结果。)法二,用摩擦角解题。引进全反力R ,对物体两个平衡状态进行受力分析,再进行矢量平移,得到图18中的左图和中间图(注意:重力G是不变的,而全反力R的方向不变、F的大小不变),m指摩擦角。再将两图重叠成图18的右
15、图。由于灰色的三角形是一个顶角为30的等腰三角形,其顶角的角平分线必垂直底边故有:m = 15。最后,= tgm 。答案:0.268 。(学生活动)思考:如果F的大小是可以选择的,那么能维持物体匀速前进的最小F值是多少?解:见图18,右图中虚线的长度即Fmin ,所以,Fmin = Gsinm 。答:Gsin15(其中G为物体的重量)。2、如图19所示,质量m = 5kg的物体置于一粗糙斜面上,并用一平行斜面的、大小F = 30N的推力推物体,使物体能够沿斜面向上匀速运动,而斜面体始终静止。已知斜面的质量M = 10kg ,倾角为30,重力加速度g = 10m/s2 ,求地面对斜面体的摩擦力大
16、小。解说:本题旨在显示整体法的解题的优越性。法一,隔离法。简要介绍法二,整体法。注意,滑块和斜面随有相对运动,但从平衡的角度看,它们是完全等价的,可以看成一个整体。做整体的受力分析时,内力不加考虑。受力分析比较简单,列水平方向平衡方程很容易解地面摩擦力。答案:26.0N 。(学生活动)地面给斜面体的支持力是多少?解:略。答:135N 。应用:如图20所示,一上表面粗糙的斜面体上放在光滑的水平地面上,斜面的倾角为。另一质量为m的滑块恰好能沿斜面匀速下滑。若用一推力F作用在滑块上,使之能沿斜面匀速上滑,且要求斜面体静止不动,就必须施加一个大小为P = 4mgsincos的水平推力作用于斜面体。使满
17、足题意的这个F的大小和方向。解说:这是一道难度较大的静力学题,可以动用一切可能的工具解题。法一:隔离法。由第一个物理情景易得,斜面于滑块的摩擦因素= tg对第二个物理情景,分别隔离滑块和斜面体分析受力,并将F沿斜面、垂直斜面分解成Fx和Fy ,滑块与斜面之间的两对相互作用力只用两个字母表示(N表示正压力和弹力,f表示摩擦力),如图21所示。对滑块,我们可以考查沿斜面方向和垂直斜面方向的平衡Fx = f + mgsinFy + mgcos= N且 f = N = Ntg综合以上三式得到:Fx = Fytg+ 2mgsin 对斜面体,只看水平方向平衡就行了P = fcos+ Nsin即:4mgsi
18、ncos=Ncos+ Nsin代入值,化简得:Fy = mgcos 代入可得:Fx = 3mgsin最后由F =解F的大小,由tg= 解F的方向(设为F和斜面的夹角)。答案:大小为F = mg,方向和斜面夹角= arctg()指向斜面内部。法二:引入摩擦角和整体法观念。仍然沿用“法一”中关于F的方向设置(见图21中的角)。先看整体的水平方向平衡,有:Fcos(- ) = P 再隔离滑块,分析受力时引进全反力R和摩擦角,由于简化后只有三个力(R、mg和F),可以将矢量平移后构成一个三角形,如图22所示。在图22右边的矢量三角形中,有: = = 注意:= arctg= arctg(tg) = 解式可得F和的值。京翰教育中心