资源描述
浓缩精华复习4 姓名
一、单选题
1.如图,AB∥CD,CB∥DE,若∠B=72°,则∠D的度数为( )
A.36° B.72° C.108° D.118°
2.若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是( )A.y1<y2<y3 B.y1<y3<y2 C.y3<y2<y1 D.y2<y1<y3
3.某学校九年级8班10名学生积极奉献爱心,自发组织捐款,支援贫困山区儿童,若他们捐款的数额分别是(单位:元):10,15,20,10,5,15,10,5,10,5,则这组捐款的众数和中位数分别是( )
A.5元、10元 B.15元、5元 C.10元、15元 D.10元、10元
4.如图,点B在x轴上,∠ABO=90°,∠A=30°,OA=4,将△OAB饶点O按顺时针方向旋转120°得到△OA′B′,则点A′的坐标是( )
A.(2,﹣2) B.(2,﹣2) C.(2,﹣2) D.(2,﹣2)
5.如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∠BOC=60°,顶点C的坐标为(m,3),反比例函数的图像与菱形对角线AO交于D点,连接BD,当BD⊥x轴时,k的值是( )
A.6 B.-6 C.12 D.-12
二、填空题(本大题共8个小题,每小题3分,共24分)
1 .小敏家下个月的开支预算如图所示,如果用于教育的支出是a元,则她家下个月的开支预算总额为元.
2.若关于的不等式的整数解共有4个,则的取值范围_____________[来源:学#科#网]
3.如图,AB是⊙O的直径,弦CD交AB于点E,且E为OB的中点,∠CDB=30°,CD=,则阴影部分的面积___________.
4.如图,将一张矩形纸片经过折叠得到一个三角形,则矩形的长与宽的比是________
[来源:Zxxk.Com]
5.如图,在平面直角坐标系中,Rt△OAB的顶点A的坐标为(9,0),,点C的坐标为(2,0),点P为斜边OB上的一个动点,则PA+PC的最小值为_______________.
三、解答题
1.在植树节到来之际,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.
(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?
(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.
2如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.
(1)求证:AF=DC;
(2)若AB=AC,试判断四边形ADCF的形状,并证明你的结论.
3.在平面直角坐标系xoy 中,反比例函数的图象与一次函数y2=ax+b的图象交于点A(1,3)和B(-3,m).
(1)求反比例函数和一次函数y2=ax+b的表达式;
(2)点C 是坐标平面内一点,BC∥x轴,AD⊥BC 交直线BC 于点D,连接AC.若AC=CD,
求点C的坐标.
4.已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D
(1)求证:CD为⊙O的切线
(2)若DC+DA=6,⊙O的直径为10,求AB的长度。
5.如图1,点O在线段AB上,AO=2,OB=1,OC为射线,且∠BOC=60°,动点P以每秒2个单位长度的速度从点O出发,沿射线OC做匀速运动,设运动时间为t秒.[来源:Z.xx.k.Com]
(1)当t=时,则OP=,S△ABP=;
(2)当△ABP是直角三角形时,求t的值;
(3)如图2,当AP=AB时,过点A作AQ∥BP,并使得∠QOP=∠B,求证:AQ·BP=3.
6.如图(1),抛物线y=ax2+bx+c与x轴交于A(x1,0)、B(x2,0)两点(x1<0<x2),与y轴交于点C(0,-3),若抛物线的对称轴为直线x=1,且OA:OC=3.
(1)求抛物线的函数解析式;
(2 若点D是抛物线BC段上的动点,且点D到直线BC距离为,求点D的坐标
(3)如图(2),若直线y=mx+n经过点A,交y轴于点E(0, -),点P是直线AE下方抛物线上一点,过点P作x轴的垂线交直线AE于点M,点N在线段AM延长线上,且PM=PN,是否存在点P,使△PMN的周长有最大值?若存在,求出点P的坐标及△PMN的周长的最大值;若不存在,请说明理由.
4
展开阅读全文