资源描述
《平行四边形的判定》的教学设计
课题
平行四边形的判定
教材
版别
人教版八年级下册
教
学
目
标
知识目标
平行四边形的判别方法
能力目标
经历平行四边形判别条件的探索过程,使学生逐步掌握说理的基本方法
情感目标
在探索的活动过程中,发展学生的合情推理意识,主动探究的习惯,使学生逐步掌握说理的基本方法
重点
平行四边形的判别条件.
难点
平行四边形的判别的应用.
教学过程
学生行为
教师行为
设计意图
一、 巧设情景
引入课题:观察校门口的伸缩门等现实场景。
观看视频
播放视频,
问:怎样在众多的四边形中准确判断出平行四边形,通过今天的学习我们一起来探索。
让学生了解平行四边形在现实生活中应用广泛。激发学生的学习兴趣及热情。
二、探究活动
回忆:你有多了解平行四边形?请在导学案相应位置写下来。
回忆得出平行四边形的定义和性质。
预设回答:两组对边分别平行。两组对边分别相等。对角相等。对角线互相平分。
引导学生回忆平行四边形的定义和性质。有序思考,从边、角、对角线的角度入手。通过白板软件给出学生的性质。
渗透划归转化思想。
回忆:我们曾经学过什么图形的判定?全等三角形判定方法的探究方法是什么?
从定义和性质逆定理得出猜想。1、猜想ad∥bc,ab∥cd,进而得出四边形abcd是平行四边形。
此逆命题显然是正确的,因为它就是平行四边形的定义,所以它也是我们判定一个四边形是否为平行四边形的基本方法(定义法)。
引导学生从平行四边形的元素入手。并从元素组合进行猜想,进一步证明得出结论。猜想得到五个逆命题,再进行验证。
那么其它逆命题是否正确呢?如果正确就可得到另外的判定方法(写出命题)。
猜想1:两组对边分别平行的四边形是平行四边形。
猜想2:两组对边分别相等的四边形是平行四边形。
猜想3:一组平行且相等的四边形是平行四边形。
猜想4:对角线分别平分的四边形是平行四边形。
猜想5:对角相等的四边形是平行四边形。
通过划归转化思想,借助曾经学习过的图形判定方法的研究方法,从而得到新图形的判定思路。
三、小组合作
选择其中一种角度验证猜想,并写出已知、求证。
观察、实验、猜测、验证与交流等数学活动。
引导者参与其中,让学生发现图中的平行四边形,并进行简单的说理
通过观察、思考的活动,发展学生的合情推理意识、主动探究的习惯。
四、随堂练习
如图,□ABCD的对角线AC、BD交于点O,点E、F是AC上的两点,并且AE=CF。求证:四边形BFDE是平行四边形。
学生首先独立思考一会儿,然后与同伴交流或讨论,最后举手发表自己的见解。经历平行四边形判别问题的探索过程,逐步掌握说理的书面表达方法。
教师作为合作者参与其中,与学困生一起完成作业拓展:通过此题,你认为平行四边形的性质与判别的区别与联系?
教师作为合作者参与其中,与学困生一起完成作业
通过随堂练习,使学生的知识水平得到恰当的巩固和提高。拓宽学生的思路,发展他们想象、联想的能力。
五、小结
通过这一节课的学习,你认为应怎样归纳平行四边形的判别?通过这节课受到了什么启发?
学生回顾探究的整个过程,体会学习的成果,感受成功的喜悦,产生后继学习的激情。
教师对学生发表的见解及时给予肯定与修正。
关注学生能否用不同的语言(自然语言、符号语言)表达自己的想法。
六、白板设计
展开阅读全文