收藏 分销(赏)

课程设计说明书中压蒸汽凝液罐-学位论文.doc

上传人:w****g 文档编号:7034110 上传时间:2024-12-25 格式:DOC 页数:43 大小:693.50KB
下载 相关 举报
课程设计说明书中压蒸汽凝液罐-学位论文.doc_第1页
第1页 / 共43页
课程设计说明书中压蒸汽凝液罐-学位论文.doc_第2页
第2页 / 共43页
点击查看更多>>
资源描述
辽 宁 石 油 化 工 大 学 过程装备与控制工程专业 过程设备设计 课程设计说明书 题目: 中压蒸汽凝液罐 学 院:机械工程学院 班 级:装备1205班 姓 名:李神炜 学 号:1202010505 2015 年 12 月 目录 设计任务书··················································1 符号说明····················································2 设计计算····················································6 1参数选取··················································6 1.1设计压力与计算压力的确定································6 1.2设计温度的确定··········································6 1.3厚度附加量··············································6 1.3.1厚度负偏差··········································6 1.3.2腐蚀裕量············································6 1.4焊接接头系数············································6 2筒体······················································7 2.1筒体材料················································7 2.2筒体许用应力············································7 2.3筒体厚度················································7 2.3.1筒体计算厚度········································7 2.3.2筒体设计厚度········································7 2.3.3筒体名义厚度········································7 2.3.4筒体有效厚度········································7 2.4筒体厚度水压试验校核····································7 2 2.4.1耐压试验压力········································7 2.4.2筒体薄膜应力········································8 2.4.3耐压试验时容器强度校核······························8 3封头······················································8 3.1封头选型················································8 3.2封头厚度················································8 3.3封头厚度水压试验校核····································8 3.3.1封头设计厚度········································9 3.3.2封头名义厚度········································9 3.3.3筒体有效厚度········································9 3.4封头厚度水压试验校核····································9 3.4.1耐压试验压力········································9 3.4.2封头薄膜应力········································9 3.4.3耐压试验时封头强度校核······························9 4附件选择··················································10 4.1支座····················································10 4.2法兰····················································10 4.3垫片····················································10 4.4加强圈··················································10 4.5补强圈··················································10 4.5.1补强判别············································10 4.5.2补强计算方法判别····································10 4.5.3开孔所需补强面积····································11 4.5.3.1封头计算厚度······································11 4.5.3.2开孔所需补强面积··································11 4.5.4有效补强范围········································11 4.5.4.1有效宽度B·········································11 4.5.4.2有效高度··········································11 4.5.5有效补强面积········································12 4.5.5.1封头多余金属面积··································12 4.5.5.2接管多余金属面积··································12 4.5.5.3接管区焊缝面积····································12 4.5.5.4有效补强面积······································12 4.5.6所需另行补强面积····································12 4.5.7补强圈设计··········································13 5储罐支座反力计算··········································13 5.1储罐质量················································13 5.1.1筒体质量············································13 5.1.2封头质量············································13 5.1.3附件质量············································14 5.1.4充气、液质量········································14 5.1.5保温层质量··········································14 5.1.6总质量··············································14 5.1.6.1操作时质量········································14 5.1.6.2压力实验时质量····································14 5.2支座反力················································14 5.2.1操作时反力··········································14 5.2.2压力实验时反力······································15 5.2.3支座反力选取········································15 5.3弯矩····················································15 5.3.1圆筒中间横截面······································15 5.3.2鞍座平面············································16 6圆筒应力计算与校核········································16 6.1圆筒轴向应力············································16 6.1.1内压未加压··········································16 6.1.2内压加压············································17 6.1.3外压加压············································17 6.1.4外压未加压··········································17 6.1.5未加压··············································18 6.1.6加压················································18 6.1.7轴向应力校核········································18 6.2圆筒和封头切应力········································19 6.2.1圆筒切应力··········································19 6.2.2封头切应力··········································19 6.2.3封头切应力校核······································19 6.3圆筒周向应力············································19 6.3.1圆筒截面周向压应力··································20 6.3.2圆筒鞍座边角周向应力································20 6.3.3鞍座垫板边缘处周向应力······························20 6.3.3周向应力校核········································20 6.4腹板水平拉应力··········································20 6.4.1支座腹板水平分力····································20 6.4.2腹板有效截面内水平拉应力····························21 6.4.3应力校核············································21 6.5鞍座压缩应力············································21 6.5.1地震载荷引起压应力··································21 6.5.1.1水平地震力········································21 6.5.1.2腹板与筋板组合截面积······························21 6.5.1.3腹板与筋板组合截面系数····························21 6.5.1.4地震载荷引起压应力································22 6.5.1.5温度变化引起的压应力······························22 6.5.1.6应力校核··········································23 6.6地震引起地脚螺栓应力····································23 6.6.1倾覆力矩············································23 6.6.2地脚螺栓拉应力······································23 6.6.3应力校核············································23 结论·······················································24 参考文献···················································25 15 设计任务书 一、 设计时间安排 从第17周(2015年12月14日)至第18周(2015年12月18日)。 二、 设计内容安排 1. 熟知相关的标准、规范及规定等相关资料; 2. 设备的设计计算及强度、稳定性校核; 3. 编写设计说明书一份; 4.绘制1号装配图一张。 三、 设计条件 详见附表一。 四、 设计要求 1. 学生要按照任务书要求,独立完成容器的设备设计; 2. 计算单位一律采用国际单位; 3. 计算过程及说明应清楚; 4. 所有标准件均要写明标记或代号; 5. 设计说明书目录要有序号、内容、页码; 6.设计说明书与装配图中的数据一致。如果装配图中有修改,在说明书中要注明变更; 7.书写工整,字迹清晰,层次分明; 8.设计说明书要有封面和封底,横向装订成册。 符号说明 ------鞍座中心线至封头切线的距离,; ------一个支座的所有加强圈与圆筒起加强作用有效段的组合截面 积之和,; ------设计温度下,按GB150.3确定的外压应力系数,; ------常温下,按GB150.3确定的外压应力系数,; ------圆筒内直径,; ------圆筒外直径,; ------每个支座的反力,; ------一个支座的所有加强圈与圆筒起加强作用的有效段的组合截 面对该截面形心轴的惯性矩之和,; ------载荷组合系数; ------系数; ------封头切线间距离,; ------圆筒中间处的轴向弯矩,; ------支座处圆筒的轴向弯矩,; ------圆筒的平均直径,; ------碟形封头球面部分内直径,; ------圆筒内直径,; ———容器容积,取17.95; ------支座的轴向宽度,; ------加强圈的宽度,; ------圆筒的有效宽度,; ------计算圆筒与加强圈形成组合截面时,圆筒的有效宽度,; ------支座垫板宽度,; ------重力加速度; ------封头曲面深度,; ------系数。 ------容器质量,; ------容器空质量,; ------设计压力,; ------计算压力,; ———介质密度,; ------单位长度载荷,; ------碟形封头过渡段转角内半径,; ------圆筒有效厚度,; ------封头有效厚度,; ------圆筒名义厚度,; ------封头名义厚度,; ------鞍座垫板有效厚度,; ------鞍座垫板名义厚度,; ------鞍座包角,°; ------设计温度下容器壳体材料的许用应力,; ------设计温度下容器圆筒材料的轴向许用压缩应力,; ------常温下容器圆筒材料的轴向许用压缩应力,; ------设计温度下加强圈材料的许用应力,; ------鞍座材料的许用应力,; ------地脚螺栓材料的许用应力,; ------圆筒中间处横截面内最高、最低点处的轴向应力,; ------支座处圆筒横截面内最高、最低点处的轴向应力,; ------支座处圆筒横截面最低处的周向应力,; ------无加强圈时鞍座边缘处的圆筒周向应力,; ------无加强圈时鞍座垫板边缘处的圆筒周向应力,; ------加强圈与圆筒组合截面处上圆筒表面的最大周向应力,; ------加强圈与圆筒组合截面上加强圈边缘处的最大周向应力, ; ------鞍座腹板水平方向上的平均拉应力,; ------由水平地震力引起的支座腹板与筋板组合截面的压应力, ; ------由温度变化引起的支座腹板与筋板组合截面的压应力,; ------圆筒切向剪应力,; ------加强圈靠近鞍座平面时,和的方位角,°; ------圆筒未被加强时,的方位角,°; ------圆筒剪应力的方位角,°。 设计计算 1参数选取 1.1设计压力与计算压力的确定 已知设计压力p为1.0Mpa,元件承受液柱静压力小于5%设计压力,所以取计算压力为1.0Mpa。 1.2设计温度的确定 已知设计温度为200℃,取操作温度为200℃。 1.3厚度附加量 (1-1) 1.3.1厚度负偏差 取厚度负偏差为0.3mm。 1.3.2腐蚀裕量 取腐蚀裕量为2mm。 1.4焊接接头系数 选择双面焊对接接头和相当于双面焊的全熔透对接接头,无损检测比例为局部,所以取为0.85。 2筒体 2.1筒体材料 介质无特有会影响储罐的性质,所以选择Q345R作为储罐筒体和封头的材料。 2.2筒体许用应力 按Q345R,200℃时计算。 2.3筒体厚度 2.3.1筒体计算厚度 (2-2) 2.3.2筒体设计厚度 (2-3) 2.3.3筒体名义厚度 (2-4) ,没有变化,所以取名义厚度12mm合适。 2.3.4筒体有效厚度 (2-5) 2.4筒体厚度水压试验校核 2.4.1耐压试验压力 按Q345R,查 (2-6) 2.4.2筒体薄膜应力 (2-7) 2.4.3耐压试验时容器强度校核 (2-8) 所以厚度合适。 3封头 3.1封头选型 由于压力和温度都不高,所以选择椭圆形封头,为方便计算,选择标准椭圆形封头,所以K=1。 3.2封头厚度 (3-1) 3.3封头厚度水压试验校核 3.3.1封头设计厚度 (3-2) 3.3.2封头名义厚度 (3-3) ,没有变化,所以取名义厚度12mm合适。 3.3.3封头有效厚度 (3-4) 3.4封头厚度水压试验校核 3.4.1耐压试验压力 按Q345R,查 (3-5) 3.4.2封头薄膜应力 (3-6) 3.4.3耐压试验时封头强度校核 (3-7) 所以厚度合适。 4附件选择 4.1支座 选择双鞍式支座,根据JB/T4712.1选取,由于筒体内径为2000mm,所以选轻型,包角选择120°,有垫板,4个筋板。 4.2法兰 根据JB/T4700-2000,由于筒体内径为2000mm,所以选平焊乙型法兰,PN=0.25Mpa,材料选择20R。 4.3垫片 由于法兰选择为乙型,所以选非金属软垫片,根据GB/T3985选择石棉橡胶板。 4.4加强圈 该储罐不设置加强圈。 4.5补强圈 4.5.1补强判别 根据表4-15,允许不另行补强的最大接管外径为,此压力容器中接管DN=250mm,故须另行考虑其补强。 4.5.2补强计算方法判别 开孔直径,此蒸汽出口直径d=254.6mm<=1000mm,满足等面积法开孔补强计算的适用条件,故可用等面积法进行开孔补强计算。 4.5.3开孔所需补强面积 4.5.3.1封头计算厚度 对于内压圆筒上的开孔,为按周向应力计算而得的计算厚度,即=6.44mm。 4.5.3.2开孔所需补强面积 (4-1) 接管有效厚度,所以 (4-2) =250×6.44+2×6.44×3.7×(1-0.63)=1627.63mm 4.5.4有效补强范围 4.5.4.1有效宽度B (4-3) (4-4) (4-5) 所以 4.5.4.2有效高度 (4-6) 外侧: 所以 (4-7) 内侧: 所以 4.5.5有效补强面积 4.5.5.1封头多余金属面积 (4-8) 封头有效厚度,所以 4.5.5.2接管多余金属面积 (4-9) 接管计算厚度 (4-10) 接管多余金属面积 4.5.5.3接管区焊缝面积 4.5.5.4有效补强面积 (4-11) 4.5.6所需另行补强面积 4.5.7补强圈设计 根据接管公称直径DN250选补强圈,参照补强圈标准JB/T 4736取补强圈外径=480mm,内径=277mm,因B=500mm>,补强圈在有效补强范围内。 补强圈厚度为 (4-12) 考虑钢板负偏差并经圆整,取补强圈名义厚度为6mm,但为便于制造时准备材料,补强圈名义厚度也可取为封头的厚度,即=12mm。 5储罐支座反力计算 5.1储罐质量 5.1.1筒体质量 (5-1) 5.1.2封头质量 (5-2) 5.1.3附件质量 由于附件质量相对筒体与封头质量较小,故忽略不计,即。 (5-3) 5.1.4充气、液质量 (5-4) 5.1.5保温层质量 5.1.6总质量 (5-5) 5.1.6.1操作时质量 5.1.6.2压力实验时质量 5.2支座反力 5.2.1操作时反力 (5-6) 5.2.2压力实验时反力 (5-7) 5.2.3支座反力选取 (5-8) 5.3弯矩 5.3.1圆筒中间横截面 (5-9) (5-10) 5.3.2鞍座平面 (5-11) (5-12) 6圆筒应力计算与校核 6.1圆筒轴向应力 6.1.1内压未加压 (6-1) (6-2) 6.1.2内压加压 (6-3) (6-4) 6.1.3外压加压 (6-5) (6-6) 6.1.4外压未加压 (6-7) (6-8) 6.1.5未加压 (6-9) (6-10) 6.1.6加压 (6-11) (6-12) (6-13) 6.1.7轴向应力校核 查图,取, 所以, 所以应力合格。 6.2圆筒和封头切应力 6.2.1圆筒切应力 由于,所以圆筒被封头加强 (6-14) 6.2.2封头切应力 (6-15) 6.2.3封头切应力校核 (6-16) 所以切向应力合格。 6.3圆筒周向应力 6.3.1圆筒截面周向压应力 (6-17) 所以 (6-18) 6.3.2圆筒鞍座边角周向应力 (6-19) 6.3.3鞍座垫板边缘处周向应力 (6-20) 6.3.3周向应力校核 所以周向应力合格。 6.4腹板水平拉应力 (6-21) 6.4.1支座腹板水平分力 6.4.2腹板有效截面内水平拉应力 (6-22) 6.4.3应力校核 所以合格。 6.5鞍座压缩应力 6.5.1地震载荷引起压应力 6.5.1.1水平地震力 (6-23) (6-24) 6.5.1.2腹板与筋板组合截面积 6.5.1.3腹板与筋板组合截面系数 (6-26) (6-27) (6-28) (6-29) (6-30) (6-31) 6.5.1.4地震载荷引起压应力 (6-32) 6.5.1.5温度变化引起的压应力 (6-33) 6.5.1.6应力校核 (6-34) 所以合格。 6.6地震引起地脚螺栓应力 6.6.1倾覆力矩 (6-35) 6.6.2地脚螺栓拉应力 (6-36) 6.6.3应力校核 所以应力合格。 结论 本次课程设计所设计的是卧式压力容器,设计筒体和封头的名义厚度为12mm。根据JB/T4712.1选择双鞍式支座,轻型,包角120°,有垫板,4个筋板。根据JB/T4700-2000,选平焊乙型法兰,PN=0.25Mpa,材料选择20R。垫片选非金属软垫片,根据GB/T3985选择石棉橡胶板。不设置加强圈。计算了筒体、封头、附件等质量;计算了支座所受的力及其反力;计算了弯矩;并据此计算了筒体的轴向应力,且应力校核合格;计算了筒体和封头的切应力,且应力校核合格;计算了腹板的水平拉力,且应力校核合格;计算了鞍座压缩应力,且应力校核合格。 最终确定所选储罐厚度合适,各部件选择合适,能满足各向应力,达到要求,所以此次设计合格。 通过这次的设计学习,对书本上的知识有了更充分的认识。同时,对设计的完成培养了个人动手能力,实践能力。使我们对压力容器了解的更加透彻。 参考文献 [1].GB150-2011.钢制压力容器[S].中华人民共和国国家质量监督检验检疫总局. [2].JB4731-2005.钢制卧式容器[S].中华人民共和国国家发展和改革委员会. [3].NB/T47042-2014.卧式容器[S].中华人民共和国国家能源局. [4].JB/T4712-2007.容器支座[S].中华人民共和国国家发展和改革委员会. [5].JB/T4702-2000.乙型平焊法兰[S].中华人民共和国国家机械工业局. [6].JB/T4736-2002.补强圈[S].中华人民共和国国家经济贸易委员会. [7].JB/T4746-2002.钢制压力容器用封头[S].中华人民共和国国家经济贸易委员会. [8].谢铁军,寿比南,王晓雷,李军.《固定式压力容器安全技术监察规程》释义[M].北京:新华出版社,2009. [9].郑津洋,董其伍,桑芝富.过程设备设计[M].北京:化学工业出版社,2010 过程设备设计---课程设计 成绩评定 出勤( %) 表现( %) 图纸( %) 说明书( %) 合计 评语: 指导教师 : 年 月 25
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服