资源描述
临猗二中导学案设计页
年级 八 学科 数学 备课人: 李虹 总排 节 月 日
教学
内容
一次函数的图象(1)
教
学
过程
设
计
描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点.
连线:把这些点依次连结起来,得到y=2x的图象.
由例1我们发现:作一个函数的图象需要三个步骤:列表,描点,连线.
第三环节:动手操作,深化探索
(1)作出正比例函数y=3x的图象.
(2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否都满足关系y=3x.
请同学们以小组为单位,讨论下面的问题,把得出的结论写出来.
(1)满足关系式y=3x的x,y所对应的点(x,y)都在正比例函数y=3x的图象上吗?
(2)正比例函数y=3x的图象上的点(x,y)都满足关系式y=3x吗?
(3)正比例函数y=kx的图象有什么特点?
明晰
由上面的讨论我们知道:正比例函数的代数表达式与图象是一一对应的,即满足正比例函数的代数表达式的x,y所对应的点(x,y)都在正比例函数的图象上;正比例函数的图象上的点(x,y)都满足正比例函数的代数表达式.正比例函数y=kx的图象是一条直线,以后可以称正比例函数y=kx的图象为直线y=kx.
请你进一步思考:
(1)正比例函数y=x和y=3x中,随着x值的增大y的值都增加了,其中
哪一个增加得更快?你能说明其中的道理吗?
(2)正比例函数y=-x和y=-4x中,随着x值的增大y的值都减小了,
其中哪一个减小得更快?你是如何判断的?我们发现:
越大,直线越靠近y轴。
第四环节:巩固练习,深化理解
练习1:在同一直角坐标系中分别作出y=x与y=-x的图象.
练习2:当时,与的函数解析式为,当时,与的函数解析式为,则在同一直角坐标系中的图象大致为( )
练习3:对于函数的两个确定的值、来说,当时,
对应的函数值与 的关系是( )
A. B. C. D. 无法确定
学生活动
学习
目标
了解一次函数的图象是一条直线, 能熟练作出一次函数的图象.2.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线.3.已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力.4.理解一次函数的代数表达式与图象之间的一一对应关系.
重点
1、 初步了解作函数图象的一般步骤:列表、描点、连线。
难点
(1)理解一次函数的代数表达式与图象之间的一一对应关系
教
学
过
程
设
计
第一环节:创设情境 引入课题
O
t(分)
S(米)
80
1
一天,小明以80米/分的速度去上学,请问小明离家的距离S(米)与小明出发的时间t(分)之间的函数关系式是怎样的?它是一次函数吗?它是正比例函数吗? S=80t(t≥0)
下面的图象能表示上面问题中的S与t的关系吗?
我们说,上面的图象是函数S=80t(t≥0)的图象,这
就是我们今天要学习的主要内容:一次函数的图象的特殊情况正比例函数的图象。
第二环节:画正比例函数的图象
内容:首先我们来学习什么是函数的图象?
把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象(graph).
例1 请作出正比例函数y=2x的图象.
议一议
既然我们得出正比例函数y=kx的图象是一条直线.那么在画正比例函数图象时有没有什么简单的方法呢?
因为“两点确定一条直线 ”,所以画正比例函数y=kx的图象时可以只描出两个点就可以了.因为正比例函数的图象是一条过原点(0,0)的直线,所以只需再确定一个点就可以了,通常过(0,0),(1,k)作直线.
例2 在同一直角坐标系内作出y=x,y=3x,y=-x,y=-4x的图象.
解:列表
过点(0,0)和(1,1)作直线,则这条直线就是y=x的图象.
过点(0,0)和(1,3)作直线,则这条直线就是y=3x的图象.
过点(0,0)和(1,-)作直线,则这条直线就是y=-x的图象.
过点(0,0)和(1,-4)作直线,则这条直线就是y=-4x的图象.
议一议
上述四个函数中,随着x的增大,y的值分别如何变化?
在正比例函数y=kx中,
当k>0时,图象在第一、三象限,y的值随着x值的增大而增大(即从左向右观察图象时,直线是向上倾斜的);当k<0时, 图象在第二、四象限, y的值随着x值的增大而减小 (即从左向右观察图象时,直线是向下倾斜的).
学生活动
板
书
设
计
课后反思
展开阅读全文