1、临猗二中导学案设计页 年级 八 学科 数学 备课人: 李虹 总排 节 月 日 教学内容一次函数的图象(1)教学过程设计描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点连线:把这些点依次连结起来,得到y=2x的图象由例1我们发现:作一个函数的图象需要三个步骤:列表,描点,连线第三环节:动手操作,深化探索(1)作出正比例函数y=3x的图象(2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否都满足关系y=3x请同学们以小组为单位,讨论下面的问题,把得出的结论写出来(1)满足关系式y=3x的x,y所对应的点(x,y)都在正比例函数y=3x的图象上吗?(2)正比例函数y=
2、3x的图象上的点(x,y)都满足关系式y=3x吗?(3)正比例函数y=kx的图象有什么特点?明晰由上面的讨论我们知道:正比例函数的代数表达式与图象是一一对应的,即满足正比例函数的代数表达式的x,y所对应的点(x,y)都在正比例函数的图象上;正比例函数的图象上的点(x,y)都满足正比例函数的代数表达式正比例函数y=kx的图象是一条直线,以后可以称正比例函数y=kx的图象为直线y=kx请你进一步思考:(1)正比例函数y=x和y=3x中,随着x值的增大y的值都增加了,其中 哪一个增加得更快?你能说明其中的道理吗?(2)正比例函数y=-x和y=-4x中,随着x值的增大y的值都减小了, 其中哪一个减小得
3、更快?你是如何判断的?我们发现: 越大,直线越靠近y轴。第四环节:巩固练习,深化理解 练习1:在同一直角坐标系中分别作出y=x与y=-x的图象练习2:当时,与的函数解析式为,当时,与的函数解析式为,则在同一直角坐标系中的图象大致为( )练习3:对于函数的两个确定的值、来说,当时,对应的函数值与 的关系是( )A. B. C. D. 无法确定学生活动学习目标 了解一次函数的图象是一条直线, 能熟练作出一次函数的图象2经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线3已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力4理解一次函数的代数表达式与图象之间的一一对应关
4、系重点1、 初步了解作函数图象的一般步骤:列表、描点、连线。难点(1)理解一次函数的代数表达式与图象之间的一一对应关系教学过程设计第一环节:创设情境 引入课题Ot(分)S(米)801一天,小明以80米/分的速度去上学,请问小明离家的距离S(米)与小明出发的时间t(分)之间的函数关系式是怎样的?它是一次函数吗?它是正比例函数吗? S=80t(t0)下面的图象能表示上面问题中的S与t的关系吗?我们说,上面的图象是函数S=80t(t0)的图象,这就是我们今天要学习的主要内容:一次函数的图象的特殊情况正比例函数的图象。第二环节:画正比例函数的图象内容:首先我们来学习什么是函数的图象?把一个函数的自变量
5、x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象(graph)例1 请作出正比例函数y=2x的图象议一议既然我们得出正比例函数y=kx的图象是一条直线那么在画正比例函数图象时有没有什么简单的方法呢?因为“两点确定一条直线 ”,所以画正比例函数y=kx的图象时可以只描出两个点就可以了因为正比例函数的图象是一条过原点(0,0)的直线,所以只需再确定一个点就可以了,通常过(0,0),(1,k)作直线.例2 在同一直角坐标系内作出y=x,y=3x,y=-x,y=-4x的图象解:列表过点(0,0)和(1,1)作直线,则这条直线就是y=x的图象过点(0,0)和(1,3)作直线,则这条直线就是y=3x的图象过点(0,0)和(1,-)作直线,则这条直线就是y=-x的图象过点(0,0)和(1,-4)作直线,则这条直线就是y=-4x的图象 议一议上述四个函数中,随着x的增大,y的值分别如何变化?在正比例函数y=kx中,当k0时,图象在第一、三象限,y的值随着x值的增大而增大(即从左向右观察图象时,直线是向上倾斜的);当k0时, 图象在第二、四象限, y的值随着x值的增大而减小 (即从左向右观察图象时,直线是向下倾斜的).学生活动板书设计课后反思