收藏 分销(赏)

图形的变换专题练习.doc

上传人:仙人****88 文档编号:6920365 上传时间:2024-12-23 格式:DOC 页数:10 大小:631.01KB
下载 相关 举报
图形的变换专题练习.doc_第1页
第1页 / 共10页
图形的变换专题练习.doc_第2页
第2页 / 共10页
图形的变换专题练习.doc_第3页
第3页 / 共10页
图形的变换专题练习.doc_第4页
第4页 / 共10页
图形的变换专题练习.doc_第5页
第5页 / 共10页
点击查看更多>>
资源描述

1、图形的变换专题练习OyxB1、如图,把抛物线与直线围成的图形绕原点顺时针旋转后,再沿轴向右平移1个单位得到图形则下列结论错误的是( )A点的坐标是 B点的坐标是C四边形是矩形 D若连接则梯形的面积是32、如图,已知抛物线C1:的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1(1)求P点坐标及a的值; (2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式; (3)如图(2),点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180后得到抛物线C4抛物线C4的顶点为N,

2、与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标 yxAOBPM图1C1C2C3图(1)yxAOBPN图2C1C4QEF图(2)3、已知抛物线经过,两点,顶点为(1)求抛物线的解析式;(2)将绕点顺时针旋转90后,点落到点的位置,将抛物线沿轴平移后经过点,求平移后所得图象的函数关系式;yxBAOD(第3题)(3)设(2)中平移后,所得抛物线与轴的交点为,顶点为,若点在平移后的抛物线上,且满足的面积是面积的2倍,求点的坐标4、如图,已知在直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OAAB2,OC3,过点B作BDBC,交O

3、A于点D,将DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴于E和F(1)求经过A,B,C三点的抛物线的解析式;(2)当BE经过(1)中抛物线的顶点时,求CF的长;(3)连接EF,设BEF与BFC的面积之差为S,问:当CF为何值时S最小,并求出这个最小值. 5、在平面直角坐标中,边长为2的正方形的两顶点、分别在轴、轴的正半轴上,点在原点.现将正方形绕点顺时针旋转,当点第一次落在直线上时停止旋转,旋转过程中,边交直线于点,边交轴于点(如图).(1)求边在旋转过程中所扫过的面积;(2)旋转过程中,当和平行时,求正方形旋转的度数;(第5题)OABCMN(3)设的周长为,在旋转正方形的过程中,

4、值是否有变化?请证明你的结论.、yxODECFAB6、如图所示,在平面直角坐标系中,矩形的边在轴的负半轴上,边在轴的正半轴上,且,矩形绕点按顺时针方向旋转后得到矩形点的对应点为点,点的对应点为点,点的对应点为点,抛物线过点(1)判断点是否在轴上,并说明理由;(2)求抛物线的函数表达式;(3)在轴的上方是否存在点,点,使以点为顶点的平行四边形的面积是矩形面积的2倍,且点在抛物线上,若存在,请求出点,点的坐标;若不存在,请说明理由2、解:(1)由抛物线C1:得顶点P的为(-2,-5) 2分yxAOBPM图(1)C1C2C3HG点B(1,0)在抛物线C1上 解得,a 4分(2)连接PM,作PHx轴于

5、H,作MGx轴于G点P、M关于点B成中心对称PM过点B,且PBMBPBHMBGMGPH5,BGBH3顶点M的坐标为(4,5) 6分 抛物线C2由C1关于x轴对称得到,抛物线C3由C2平移得到抛物线C3的表达式为 8分(3)抛物线C4由C1绕点x轴上的点Q旋转180得到顶点N、P关于点Q成中心对称 由(2)得点N的纵坐标为5yxAOBPN图(2)C1C4QEFHGK设点N坐标为(m,5) 9分 作PHx轴于H,作NGx轴于G 作PKNG于K 旋转中心Q在x轴上EFAB2BH6 FG3,点F坐标为(m+3,0) H坐标为(2,0),K坐标为(m,-5),根据勾股定理得 PN2NK2+PK2m2+4

6、m+104 PF2PH2+HF2m2+10m+50 NF252+3234 10分 当PNF90时,PN2+ NF2PF2,解得m,Q点坐标为(,0) 当PFN90时,PF2+ NF2PN2,解得m,Q点坐标为(,0)PNNK10NF,NPF90综上所得,当Q点坐标为(,0)或(,0)时,以点P、N、F为顶点的三角形是直角三角形 13分3解:(1)已知抛物线经过, 解得所求抛物线的解析式为2分(2),可得旋转后点的坐标为3分当时,由得,可知抛物线过点将原抛物线沿轴向下平移1个单位后过点平移后的抛物线解析式为:5分(3)点在上,可设点坐标为yxCBAONDB1D1图将配方得,其对称轴为6分当时,如

7、图,此时yxCBAODB1D1图N点的坐标为8分当时,如图同理可得此时点的坐标为综上,点的坐标为或10分4、【答案】由题意得:A(0,2)、B(2,2)、C(3,0),设经过A,B,C三点的抛物线的解析式为,则,解得:,所以(2)由,所以顶点坐标为G(1,),过G作GHAB,垂足为H,则AHBH1,GH2,EAAB,GHAB,EAGH,GH是BEA的中位线,EA3GH,过B作BMOC,垂足为M,则MBOAAB,EBFABM90,EBAFBM90ABF,R tEBAR tFBM,FMEA,CMOCOM321,CFFMCM(3)设CFa,则FM a1或1 a,BF2FM2BM2(a1)222a22

8、a5,又EBAFBM,BMBF,则,又,S ,即S,当a2(在2a3)时,5.(1)解:点第一次落在直线上时停止旋转,旋转了.在旋转过程中所扫过的面积为.4分(2)解:,,.又,.又,.旋转过程中,当和平行时,正方形旋转的度数为.8分(3)答:值无变化. 证明:延长交轴于点,则,.(第26题)OABCMN又,. 又, .,.在旋转正方形的过程中,值无变化. 12分yxODECFAB6、(辽宁沈阳)(1)点在轴上理由如下:连接,如图所示,在中,由题意可知:点在轴上,点在轴上(2)过点作轴于点,在中,点在第一象限,点的坐标为由(1)知,点在轴的正半轴上点的坐标为点的坐标为抛物线经过点,由题意,将,代入中得 解得所求抛物线表达式为:(3)存在符合条件的点,点10分理由如下:矩形的面积以为顶点的平行四边形面积为由题意可知为此平行四边形一边,又边上的高为2依题意设点的坐标为点在抛物线上解得,以为顶点的四边形是平行四边形,yxODECFABM,当点的坐标为时,点的坐标分别为,;

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 小学其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服