资源描述
第一章:函数与极限
教学目的 1。正确理解函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系式;
2. 正确理解函数的奇偶性、单调性、周期性和有界性;
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念;
4. 掌握基本初等函数的性质及其图形。
教学重点 分段函数,复合函数,初等函数。
教学难点 有界性,初等函数的判断。
教学内容:
前言
名称:高等数学
教学过程一学年
主要内容:一元、多元函数微分学和积分学、矢量代数、空间解析几何、无穷级数和微分方程。
教学目的:掌握高等数学的基本知识,基本理论,基本计算方法,提高数学素养。培养学生的抽象思维和逻辑推理能力,辩证的思想方法,培养学生的空间想象能力,培养学生分析问题和解决问题的能力。为学生进一步学习数学打下一定的基础,还要为学习专业的后继课程准备必要的数学基础。
第一节:映射与函数
一、集合
1、 集合概念
具有某种特定性质的事物的总体叫做集合。组成这个集合的事物称为该集合的元素
表示方法:用A,B,C,D表示集合;用a,b,c,d表示集合中的元素
1)
2)
元素与集合的关系:
一个集合,若它只含有有限个元素,则称为有限集;不是有限集的集合称为无限集。
常见的数集:N,Z,Q,R,N+
元素与集合的关系: A、B是两个集合,如果集合A的元素都是集合B的元素,则称A是B的子集,记作。
如果集合A与集合B互为子集,则称A与B相等,记作
若作且则称A是B的真子集。
空集:
2、 集合的运算
并集 :
交集 :
差集 :
全集I 、E 补集:
集合的并、交、余运算满足下列法则:
交换律、
结合律、
分配律
对偶律 (
笛卡儿积A×B
3、 区间和邻域
开区间 闭区间 半开半闭区间 有限、无限区间
邻域: a 邻域的中心 邻域的半径
去心邻域 左、右邻域
二、映射
1. 映射概念
定义 设X,Y是两个非空集合,如果存在一个法则,使得对X中的每一个元素,按法则,在Y中有唯一确定的元素与之对应,则称为从X到Y的映射,记作
其中 称为元素的像,并记作,即
注意:1)集合X;集合Y;对应法则
2)每个X有唯一的像;每个Y的原像不唯一
3) 单射、满射、双射
2、 映射、复合映射
三、函数
1、 函数的概念:
定义:设数集,则称映射为定义在D上的函数 记为
自变量、因变量、定义域、值域、函数值
用、、
函数相等:定义域、对应法则相等
自然定义函数;单值函数;多值函数、单值分枝.
例:1) y=2
2) y=
3) 符号函数
4) 取整函数 (阶梯曲线)
5) 分段函数
2、 函数的几种特性
1) 函数的有界性 (上界、下界;有界、无界)
有界的充要条件:既有上界又有下界。
注:不同函数、不同定义域,有界性变化。
2) 函数的单调性 (单增、单减)在x1、x2点比较函数值
与的大小(注:与区间有关)
3) 函数的奇偶性(定义域对称、与关系决定)
图形特点 (关于原点、Y轴对称)
4)函数的周期性(定义域中成立:)
3、 反函数与复合函数
反函数:函数是单射,则有逆映射,称此映射为函数的反函数
函数与反函数的图像关于对称
复合函数:函数定义域为D1,函数在D上有定义、且。则为复合函数。(注意:构成条件)
4、 函数的运算
和、差、积、商(注:只有定义域相同的函数才能运算)
5、 初等函数:
1) 幂函数: 2)指数函数:
3) 对数函数
4)三角函数
5) 反三角函数
,
以上五种函数为基本初等函数
6) 双曲函数
注:双曲函数的单调性、奇偶性。
双曲函数公式
反双曲函数:
展开阅读全文