收藏 分销(赏)

数控铣床典型故障分析和维修系统.doc

上传人:胜**** 文档编号:688675 上传时间:2024-02-02 格式:DOC 页数:24 大小:250KB
下载 相关 举报
数控铣床典型故障分析和维修系统.doc_第1页
第1页 / 共24页
数控铣床典型故障分析和维修系统.doc_第2页
第2页 / 共24页
数控铣床典型故障分析和维修系统.doc_第3页
第3页 / 共24页
数控铣床典型故障分析和维修系统.doc_第4页
第4页 / 共24页
数控铣床典型故障分析和维修系统.doc_第5页
第5页 / 共24页
点击查看更多>>
资源描述

1、。广州华立科技职业院毕业设计(论文)中文题目: 数控铣床的典型故障分析与维修系统 英文题目: CNC milling machine of typical fault analysis and repair system 学生姓名: 学 号: 专 业: 指导老师姓名: 论文提交时间: 2011-3-25 目 录中英文摘要2一数控铣床的结构工作原理简介31.1 数控铣床的主要分类31.2 按结构分51.3按控制方式分6二. 数据铣床的作业安全规则62.1安全规则62.2铣床例保作业范围7三. 数控铣床的常见故障及维修方法83.1数控机床故障诊断83.2数控机床的故障诊断技术93.3数控机床的常见

2、故障排除方法123.4数控机床维修后的开机调试143.5维修调试后的技术处理14四. 数控铣床的系统故障与维修17五. 数控铣床的故障检测与故障排除案例19案例小结21致 谢22参考文献23内容摘要数控技术的应用不但给传统制造业带来了革命性的变化,使制造业成为工业化的象征,而且随着数控技术的不断发展和应用领域的扩大,对国计民生的一些重要行业国防、汽车等的发展起着越来越重要的作用,这些行业装备数字化已是现代发展的大趋势,。本文阐述了数控铣床参数故障产生的原因、恢复方法,通过各种常见参数故障的排除方法,并结合相关的实际案例分析,提出了行之有效的维修技巧,采用这些维修技巧可以大大提高维修效率。关键词

3、:数控铣床 故障排除方法 维修实例 数控系统Abstract The application of numerical control technology not only to the traditional manufacturing industry has brought revolutionary changes, so that the manufacturing sector to become a symbol of industrialization, and with the continuous development of NC technology and expa

4、nding the scope of application, beneficial to the peoples livelihood of some of the major industries of national defense, automobile and other development plays a more and more important role, these industry equipment digitization is the modern trend of development,. This paper expounds the NC milli

5、ng parameter fault reason, recovery method, through a variety of common parameters for troubleshooting method, combined with the actual case analysis, put forward the effective repair techniques, repair using these techniques can greatly improve the efficiency of repair.Key words: CNC milling machin

6、e troubleshooting repair repair examples numerical control system 数控铣床的结构工作原理简介一数控铣床的结构工作原理简介铣床是一种用途广泛的机床,在铣床上可以加工平面(水平面、垂直面)、沟槽(键槽、T形槽、燕尾槽等)、分齿零件(齿轮、花键轴、链轮乖、螺旋形表面(螺纹、螺旋槽)及各种曲面(见图1)。此外,还可用于对回转体表面、内孔加工及进行切断工作等。 铣床在工作时,工件装在工作台上或分度头等附件上,铣刀旋转为主运动,辅以工作台或铣头的进给运动,工件即可获得所需的加工表面。由于是多刀断续切削,因而铣床的生产率较高。用铣刀对工件进行

7、铣削加工的机床。铣床除能铣削平面、沟槽、轮齿、螺纹和花键轴外,还能加工比较复杂的型面,效率较刨床高,在机械制造和修理部门得到广泛应用。(图1)1.1 数控铣床的主要分类按布局形式和适用范围加以区分 铣床1.1.1升降台铣床:有万能式、卧式和立式等,主要用于加工中小型零件,应用最广。 1.1.2龙门铣床:包括龙门铣镗床、龙门铣刨床和双柱铣床,均用于加工大型零件。 1.1.3单柱铣床和单臂铣床:前者的水平铣头可沿立柱导轨移动,工作台作纵向进给;后者的立铣头可沿悬臂导轨水平移动,悬臂也可沿立柱导轨调整高度。两者均用于加工大型零件。 1.1.4工作台不升降铣床:有矩形工作台式和圆工作台式两种,是介于升

8、降台铣床和龙门铣床之间的一种中等规格的铣床。其垂直方向的运动由铣头在立柱上升降来完成。 1.1.5仪表铣床:一种小型的升降台铣床,用于加工仪器仪表和其他小型零件。 1.1.6工具铣床:用于模具和工具制造,配有立铣头、万能角度工作台和插头等多种附件,还可进行钻削、镗削和插削等加工。 1.1.7其他铣床:如键槽铣床、凸轮铣床、曲轴铣床、轧辊轴颈铣床和方钢锭铣床等,是为加工相应的工件而制造的专用铣床。按控制方式,铣床又分为仿形铣床(见仿形机床)、程序控制铣床和数字控制铣床(见数字控制机床)1.2 按结构分 铣床1.2.1台式铣床:小型的用于铣削仪器、仪表等小型零件的铣床。 1.2.2悬臂式铣床:铣头

9、装在悬臂上的铣床,床身水平布置,悬臂通常可沿床身一侧立柱导轨作垂直移动,铣头沿悬臂导轨移动。 1.2.3滑枕式铣床:主轴装在滑枕上的铣床,床身水平布置,滑枕可沿滑鞍导轨作横向移动,滑鞍可沿立柱导轨作垂直移动。 1.2.4龙门式铣床:床身水平布置,其两侧的立柱和连接梁构成门架的铣床。铣头装在横梁和立柱上,可沿其导轨移动。通常横梁可沿立柱导轨垂向移动,工作台可沿床身导轨纵向移动,用于大件加工。 1.2.5平面铣床:用于铣削平面和成型面的铣床,床身水平布置,通常工作台沿床身导轨纵向移动,主轴可轴向移动。它结构简单,生产效率高。 1.2.6仿形铣床:对工件进行仿形加工的铣床。一般用于加工复杂形状工件。

10、 1.2.7升降台铣床:具有可沿床身导轨垂直移动的升降台的铣床,通常安装在升降台上的工作台和滑鞍可分别作纵向、横向移动。 1.2.8摇臂铣床:摇臂装在床身顶部,铣头装在摇臂一端,摇臂可在水平面内回转和移动,铣头能在摇臂的端面上回转一定角度的铣床。 1.2.9床身式铣床:工作台不能升降,可沿床身导轨作纵向移动,铣头或立柱可作垂直移动的铣床。 1.2.10专用铣床:例如工具铣床:用于铣削工具模具的铣床,加工精度高,加工形状复杂。1.3按控制方式分 铣床又可分为仿形铣床、程序控制铣床和数控铣床等。二. 数据铣床的作业安全规则2.1安全规则3.1.1装卸工件,必须移开刀具,切削中头、手不得接近铣削面。

11、3.1.2使用旭正铣床对刀时,必须慢进或手摇进,不许快进,走刀时,不准停车。 3.1.3快速进退刀时注意旭正铣床手柄是否会打人。 3.1.4进刀不许过快,不准突然变速,旭正铣床限位挡块应调好。 3.1.5上下及测量工件、调整刀具、紧固变速,均必须停止旭正铣床。 3.1.6拆装立铣刀,工作台面应垫木板,拆平铣刀扳螺母,用力不得过猛。 严禁手摸或用棉纱擦转动部位及刀具,禁止用手去托刀盘。2.2铣床例保作业范围 2.2.1床身及部件的清洁工作,清扫铁屑及周边环境卫生; 2.2.2检查各油平面,不得低于油标以下,加注各部位润滑油; 2.2.3清洁工、夹、量具。 铣床一保作业范围 2.2.4清洗调整工作

12、台、丝杆手柄及柱上镶条; 2.2.5检查、调整离合器; 2.2.6清洗三向导轨及油毛毡,电动机、机床内外部及附件清洁; 2.2.7检查油路,加注各部润滑油; 2.2.8紧固各部螺丝。 2.2.9床身及部件的清洁工作,清扫铁屑及周边环境卫生,清洁工、夹、量具; 2.2.10检查各油平面,不得低于油标以下,加注各部位润滑油。 2.2.11清洁 拆卸清洗各部油毛毡垫;擦拭各滑动面和导轨面、擦拭工作台及横向、升降丝杆、擦拭走刀传动机构及刀架;擦拭各部死角。 2.2.12润滑 各油孔清洁畅通并加注润滑油;各导轨面和滑动面及各丝杆加注润滑油;检查传动机构油箱体、油面、并加油至标高位置。 2.2.13扭紧

13、检查并紧固压板及镶条螺丝;检查并扭紧滑块固定螺丝、走刀传动机构、手轮、工作台支架螺丝、叉顶丝;检查扭紧其它部份松动螺丝。 2.1.14调整 检查和调整皮带、压板及镶条松紧适宜;检查和调整滑块及丝杆合令。 2.2.15防腐 除去各部锈蚀,保护喷漆面,勿碰撞;停用、备用设备导轨面、滑动丝杆手轮及其它暴露在外易生锈的部位涂油防腐。三. 数控铣床的常见故障及维修方法数控系统故障维修通常按照:现场故障的诊断与分析、故障的测量维修排除、系统的试车这三大步进行。3.1数控机床故障诊断在故障诊断时应掌握以下原则:3.1.1 先外部后内部现代数控系统的可靠性越来越高,数控系统本身的故障率越来越低,而大部分故障的

14、发生则是非系统本身原因引起的。由于数控机床是集机械、液压、电气为一体的机床,其故障的发生也会由这三者综合反映出来。维修人员应先由外向内逐一进行排查。尽量避免随意地启封、拆卸,否则会扩大故障,使机床丧失精度、降低性能。系统外部的故障主要是由于检测开关、液压元件、气动元件、电气执行元件、机械装置等出现问题而引起的。3.1.2 先机械后电气一般来说,机械故障较易发觉,而数控系统及电气故障的诊断难度较大。在故障检修之前,首先注意排除机械性的故障。3.1.3 先静态后动态先在机床断电的静止状态,通过了解、观察、测试、分析,确认通电后不会造成故障扩大、发生事故后,方可给机床通电。在运行状态下,进行动态的观

15、察、检验和测试,查找故障。而对通电后会发生破坏性故障的,必须先排除危险后,方可通电。3.1.4 先简单后复杂当出现多种故障互相交织,一时无从下手时,应先解决容易的问题,后解决难度较大的问题。往往简单问题解决后,难度大的问题也可能变得容易。3.2数控机床的故障诊断技术数控系统是高技术密集型产品,要想迅速而正确的查明原因并确定其故障的部位,要借助于诊断技术。随着微处理器的不断发展,诊断技术也由简单的诊断朝着多功能的高级诊断或智能化方向发展。诊断能力的强弱也是评价CNC数控系统性能的一项重要指标。目前所使用的各种CNC系统的诊断技术大致可分为以下几类:3.2.1 起动诊断起动诊断是指CNC系统每次从

16、通电开始,系统内部诊断程序就自动执行诊断。诊断的内容为系统中最关键的硬件和系统控制软件,如 CPU、存储器、I/O 等单元模块,以及MDI/CRT单元、纸带阅读机、软盘单元等装置或外部设备。只有当全部项目都确认正确无误之后,整个系统才能进入正常运行的准备状态。否则,将在CRT画面或发光二极管用报警方式指示故障信息。此时起动诊断过程不能结束,系统无法投入运行。3.2.2 在线诊断在线诊断是指通过CNC系统的内装程序,在系统处于正常运行状态时对CNC系统本身及CNC装置相连的各个伺服单元、伺服电机、主轴伺服单元和主轴电动机以及外部设备等进行自动诊断、检查。只要系统不停电,在线诊断就不会停止。 在线

17、诊断一般包括自诊断功能的状态显示有上千条,常以二进制的0、1来显示其状态。对正逻辑来说,0表示断开状态,1表示接通状态,借助状态显示可以判断出故障发生的部位。常用的有接口状态和内部状态显示,如利用I/O接口状态显示,再结合PLC梯形图和强电控制线路图,用推理法和排除法即可判断出故障点所在的真正位置。故障信息大都以报警号形式出现。一般可分为以下几大类:过热报警类;系统报警类;存储报警类;编程/设定类;伺服类;行程开关报警类;印刷线路板间的连接故障类。3.2.3 离线诊断离线诊断是指数控系统出现故障后,数控系统制造厂家或专业维修中心利用专用的诊断软件和测试装置进行停机(或脱机)检查。力求把故障定位

18、到尽可能小的范围内,如缩小到某个功能模块、某部分电路,甚至某个芯片或元件,这种故障定位更为精确。3.2.4 现代诊断技术随着电信技术的发展,IC和微机性价比的提高,近年来国外已将一些新的概念和方法成功地引用到诊断领域。3.2.4.1通信诊断也称远程诊断,即利用电话通讯线把带故障的CNC系统和专业维修中心的专用通讯诊断计算机通过连接进行测试诊断。如西门子公司在CNC系统诊断中采用了这种诊断功能,用户把CNC系统中专用的“通信接口”连接在普通电话线上,而两门子公司维修中心的专用通迅诊断计算机的“数据电话”也连接到电话线路上,然后由计算机向 CNC系统发送诊断程序,并将测试数据输回到计算机进行分析并

19、得出结论,随后将诊断结论和处理办法通知用户。通讯诊断系统还可为用户作定期的预防性诊断,维修人员不必亲临现场,只需按预定的时间对机床作一系列运行检查,在维修中心分析诊断数据,可发现存在的故障隐患,以便及早采取措施。当然,这类CNC系统必须具备远程诊断接口及联网功能。3.2.4.2自修复系统就是在系统内设置有备用模块,在CNC系统的软件中装有自修复程序,当该软件在运行时一旦发现某个模块有故障时,系统一方面将故障信息显示在CRT上,同时自动寻找是否有备用模块,如有备用模块,则系统能自动使故障脱机,而接通备用模块使系统能较快地进入正常工作状态。这种方案适用于无人管理的自动化工作场合。需要注意的是:机床

20、在实际使用中也有些故障既无报警,现象也不是很明显,对这种情况,处理起来就不那样简单了。另外有此设备出现故障后,不但无报警信息,而且缺乏有关维修所需的资料。对这类故障的诊断处理,必须根据具体情况仔细检查,从现象的微小之处进行分析,找出它的真正原因。要查清这类故障的原因,首先必须从各种表面现象中找山它的真实故障现象,再从确认的故障现象中找出发生的原因。全面地分析一个故障现象是决定判断是否正确的重要因素。在查找故障原因前,首先必须了解以下情况:故障是在正常工作中出现还是刚开机就出现的;山现的次数是第一次还是已多次发生;确认机床加工程序的正确性;是否有其他人 3.3数控机床的常见故障排除方法由于数控机

21、床故障比较复杂,同时数控系统自诊断能力还不能对系统的所有部件进行测试,往往是一个报警号指示出众多的故障原因,使人难以入手。下面介绍维修人员任生产实践中常用的排除故障方法。3.3.1直观检查法直观检查法是维修人员根据对故障发生时的各种光、声、味等异常现象的观察,确定故障范围,可将故障范围缩小到一个模块或一块电路板上,然后再进行排除。一般包括:a.询问:向故障现场人员仔细询问故障产生的过程、故障表象及故障后果等;b.目视:总体查看机床各部分工作状态是否处于正常状态,各电控装置有无报警指示,局部查看有无保险烧断,元器件烧焦、开裂、电线电缆脱落,各操作元件位置正确与否等等;c.触摸:在整机断电条件下可

22、以通过触摸各主要电路板的安装状况、各插头座的插接状况、各功率及信号导线的联接状况以及用手摸并轻摇元器件,尤其是大体积的阻容、半导体器件有无松动之感,以此可检查出一些断脚、虚焊、接触不良等故障;d.通电:是指为了检查有无冒烟、打火,有无异常声音、气味以及触摸有无过热电动机和元件存在而通电,一旦发现立即断电分析。如果存在破坏性故障,必须排除后方可通电。例:一台数控加工中心在运行一段时间后,CRT显示器突然出现无显示故障,而机床还可继续运转。停机后再开又一切正常。观察发现,设备运转过程中,每当发生振动时故障就可能发生。初步判断是元件接触不良。当检查显示板时,CRT显示突然消失。检查发现有一晶振的两个

23、引脚均虚焊松动。重新焊接后,故障消除。3.3.2 初始化复位法一般情况下,由于瞬时故障引起的系统报警,可用硬件复位或开关系统电源依次来清除故障。若系统工作存贮区由于掉电、拨插线路板或电池欠压造成混乱,则必须对系统进行初始化清除,清除前应注意作好数据拷贝记录,若初始化后故障仍无法排除,则进行硬件诊断。例:一台数控车床当按下自动运行键,微机拒不执行加工程序,也不显示故障自检提示,显示屏幕处于复位状态(只显示菜单)。有时手动、编辑功能正常,检查用户程序、各种参数完全正确;有时因记忆电池失效,更换记忆电池等,系统显示某一方向尺寸超量或各方向的尺寸都超最(显示尺寸超过机床实斤能加工的最大尺寸或超过系统能

24、够认可的最大尺寸)。排除方法:采用初始化复位法使系统清零复位(一般要用特殊组合健或密码)。3.3.3 自诊断法数控系统已具备了较强的自诊断功能,并能随时监视数控系统的硬件和软件的工作状态。利用自诊断功能,能显示出系统与主机之间的接口信息的状态,从而判断出故障发生在机械部分还是数控部分,并显示出故障的大体部位(故障代码)。a.硬件报警指示:是指包括数控系统、伺服系统在内的各电气装置上的各种状态和故障指示灯,结合指示灯状态和相应的功能说明便可获知指示内容及故障原因与排除方法;b.软件报警指示:系统软件、PLC程序与加工程序中的故障通常都设有报警显示,依据显示的报警号对照相应的诊断说明手册便可获知可

25、能的故障原因及排除方法。 功能程序测试法是将数控系统的G、M、S、T、F功能用编程法编成一个功能试验程序,并存储在相应的介质上,如纸带和磁带等。在故障诊断时运行这个程序,可快速判定故障发生的可能起因。3.3.4功能程序测试法常应用于以下场合:a.机床加工造成废品而一时无法确定是编程操作不当、还是数控系统故障引起;b. 数控系统出现随机性故障,一时难以区别是外来干扰,还是系统稳定性个好;c. 闲置时间较长的数控机床在投入使用前或对数控机床进行定期检修时。例:一台FANUC9系统的立式铣床在自动加工某一曲线零件时出现爬行现象,表面粗糙度极差。在运行测试程序时,直线、圆弧插补时皆无爬行,由此确定原因

26、在编程方面。对加工程序仔细检查后发现该曲线由很多小段圆弧组成,而编程时又使用了正确定位外检查C61指令之故。将程序中的G61取消,改用G64后,爬行现象消除。 3.3.5 备件替换法用好的备件替换诊断出坏的线路板,即在分析出故障大致起因的情况下,维修人员可以利用备用的印刷电路板、集成电路芯片或元器件替换有疑点的部分,从而把故障范围缩小到印刷线路板或芯片一级。并做相应的初始化起动,使机床迅速投入正常运转。对于现代数控的维修,越来越多的情况采用这种方法进行诊断,然后用备件替换损坏模块,使系统正常工作。尽最大可能缩短故障停机时间,使用这种方法在操作时注意一定要在停电状态下进行,还要仔细检查线路板的版

27、本、型号、各种标记、跨接是否相同,若不一致则不能更换。拆线时应做好标志和记录。一般不要轻易更换CPU板、存储器板及电地,否则有可能造成程序和机床参数的丢失,使故障扩大。例:一台采用西门子SINUMERIK SYSTEM 3系统的数控机床,其PLC采川S5130w/B,一次发生故障时,通过NC系统PC功能输入的R参数,在加工中不起作用,不能更改加上程序中R参数的数值。通过对NC系统工作原理及故障现象的分析,认为PLC的主板有问题,与另一台机床的主板对换后,进一步确定为PLC主板的问题。经专业厂家维修,故障被排除。3.3.6 交叉换位法当发现故障板或者个能确定是否是故障板而又没有备件的情况下,可以

28、将系统中相同或相兼容的两个板互换检查,例如两个坐标的指令板或伺服板的交换,从中判断故障板或故障部位。这种交叉换位法应特别注意,不仅要硬件接线的正确交换,还要将一系列相应的参数交换,否则不仅达不到目的,反而会产生新的故障造成思维混乱,一定要事先考虑周全,设计好软、硬件交换方案,准确无误再行交换检查。例:一台数控车床出现X向进给正常,Z向进给出现振动、噪音大、精度差,采用手动和手摇脉冲进给时也如此。观察各驱动板指示灯亮度及其变化基本正常,疑是Z轴步进电动机及其引线开路或Z轴机械故障。遂将Z轴电机引线换到X轴电机上,X轴电机运行正常,说明Z轴电动机引线正常;又将X轴电机引线换到Z轴电机上,故障依旧;

29、可以断定是Z轴电动机故障或Z轴机械故障。测量电动机引线,发现一相开路。修复步进电动机,故障排除。3.3.7 参数检查法系统参数是确定系统功能的依据,参数设定错误就可能造成系统的故障或某功能无效。发生故障时应及时核对系统参数,参数一般存放在磁泡存储器或存放在需由电池保持的 CMOS RAM中,一旦电池电量不足或由于外界的干扰等因素,使个别参数丢失或变化,发生混乱,使机床无法正常工作。此时,可通过核对、修正参数,将故障排除。例:一台数控铣床上采用了测量循环系统,这一功能要求有一个背景存贮器,调试时发现这一功能无法实现。检查发现确定背景存贮器存在的数据位没有设定,经设定后该功能正常。又如:一台数控车

30、床数控刀架换对突然出现故障,系统无法自动运行,在手动换刀时,总要过一段时间才能再次换刀。遂对刀补等参数进行检查,发现一个手册上没有说明的参数P20变为20,经查有关资料P20是刀架换刀时间参数,将其清零,故障排除。有时由于用户程序和参数错误亦可造成故障停机,对此可以采用系统的程序自诊断功能进行检查,改正所有错误,以确保其正常运行。3.3.8 测量比较法CNC系统生产厂在设计印刷线路板时,为了调整和维修方便,在印刷线路板上设计了一些检测端子。维修人员通过测量这些检测端子的电压或波形,可检查有关电路的工作状态是否正常。但利用检测端子进行测量之前,应先熟悉这些检测端子的作用及有关部分的电路或逻辑关系

31、。3.3.9 敲击法当系统故障表现为有时正常有时不正常时,基本可以断定为元器件接触不良或焊点开焊,利用敲击法检查时,当敲击到虚焊或接触不良的故障部位时,故障就会出现。3.3.10 局部升温法数控系统经过长期运行后元件均要老化,性能变坏。当它们尚未完全损坏时,出现的故障就会时有时无。这时用电烙铁或电吹风对被怀疑的元件进行局部加温,会使故障快速出现。操作时,要注意元器件的温度参数等,注意不要损坏好的元器件。3.3.11 原理分析法根据数控系统的组成原理,可从逻辑上分析各点的逻辑电平和特性参数,如电压值和波形,使用仪器仪表进行测量、分析、比较,从而确定故障部位。除以上常用的故障检测方法之外,还可以采

32、用拔插板法、电压拉偏法、开环检测法等。总之,根据不同的故障现象,可以同时选用几个方法灵活应用、综合分析,才能逐步缩小故障范围,较快地排除故障。3.4数控机床维修后的开机调试机床的故障排除后通常分两大步进行通电试车:3.4.1 自动状态试验将机床锁住,用编制的程序进行空运转试验,验证程序的正确性,然后放开机床,分别将进给倍率开关、快速超凋开关、主轴速度超调开关进行多种变化,使机床在上述各开关的多种变化的情况下进行充分地运行,后将各超调开关置于100处,使机床充分运行,观察整机的工作情况是否正常。3.4.2 正常加工试验夹装好工件按正常程序进行加工,加工后检查工件的加工精度是否符合标准要求3.5维

33、修调试后的技术处理在现场维修结束后,应认真填写维修记录,列出有关必备的备件清单,建立用户档案。对于故障时间、现象分析诊断方法、采用排故方法,如果有遗留问题应详尽记录,这样不仅使每次故障都有据可查,而且也可以不断积累维修经验。四. 数控铣床的系统故障与维修机床的位置反馈测量系统的精度和位置环增益Kc影响到位置误差的输出。位置环增益反映了整个伺服系统的灵敏度,在系统稳定的前提下,增益越高,定位误差越小,但机床容易振荡,不易调整;系统的增益越低,定位误差越大,但机床容易调整,不易振荡。现调出数控系统的系统参数,检查位置环的增益是否选得太低,使定位误差较大。经校对,位置环的增益和机床调试好后的增益一致

34、。因此,该机床的问题可能在机床的位置反馈测量系统的精度和控制装置的位置调节精度不匹配上。 由于该机床采用全闭环位置控制系统,是直接从机床移动部件(工作台)上获得位置实际移动值,因此其检测精度不受机械传动精度的影响。要使位置环能够正常工作,必须具有正确的位置调节闭环回路。为此必须使位置测量系统的脉冲与控制装置的位置调节精度相互匹配。在该系统中有一个可设置参数MD5002(共8位),表示反馈输入分辨率和位置控制分辨率,只有当反馈输入精度的设置和位置控制精度的设置相互匹配时,位置环才可能正确运算,使机床正常移动,在误差允许的范围内准确到达指定位置。在CNC系统中,定位误差的计算是以伺服分辨率为单位的

35、,如果位置反馈输入的精度和位置控制的精度不一致,位置误差的计算就在非统一单位下进行的,其结果就不是真正意义上的指令位置和实际位置的误差,因而工作台就不能到达指令所要求的位置。故障处理根据以上故障分析,调出系统参数,校对参数单元MD5002的内容,发现与原来调试好的参数有出入,可能是外部某种干扰,使RAM中的参数发生混乱。现将该参数进行正确修改后,使机床数控系统复位,再开动机床,经检测,机床的定位精度达到了正常要求,机床恢复了正常生产。五. 数控铣床的故障检测与故障排除案例由于现代数控系统的可靠性越来越高,数控系统本身的故障越来越低,而大部分故障的发生则是非系统本身原因引起的。系统外部的故障主要

36、指由于检测开关、液压元件、气动元件、电气执行元件、机械装置等出现问题而引起的。数控设备的外部故障可以分为软故障和外部硬件损坏引起的硬故障。软故障是指由于操作、调整处理不当引起的,这类故障多发生在设备使用前期或设备使用人员调整时期。对于数控系统来说,另一个易出故障的地方为伺服单元。由于各轴的运动是靠伺服单元控制伺服电机带动滚珠丝杠来实现的。用旋转编码器作速度反馈,用光栅尺作位置反馈。一般易出故障的地方为旋转编码器与伺服单元的驱动模块。也有个别的是由于电源原因而引起的系统混乱。特别是对那些带计算机硬盘保存数据的系统。例如,德国西门子系统840C。 5.1:一数控车床刚投入使用的时候,在系统断电后重

37、新启动时,必须要返回到参考点。即当用手动方式将各轴移到非干涉区外后,再使各轴返回参考点。否则,可能发生撞车事故。所以,每天加工完后,最好把机床的轴移到安全位置。此时再操作或断电后就不会出现问题。 外部硬件操作引起的故障是数控修理中的常见故障。一般都是由于检测开关、液压系统、气动系统、电气执行元件、机械装置出现问题引起的。这类故障有些可以通过报警信息查找故障原因。对一般的数控系统来讲都有故障诊断功能或信息报警。维修人员可利用这些信息手段缩小诊断范围。而有些故障虽有报警信息显示,但并不能反映故障的真实原因。这时需根据报警信息和故障现象来分析解决。5.2:我厂一车削单元采用的是SINUMERIK84

38、0C系统。机床在工作时突然停机。显示主轴温度报警。经过对比检查,故障出现在温度仪表上,调整外围线路后报警消失。随即更换新仪表后恢复正常。 5.3:同样是这台车削中心,工作时CRT显示9160报警“9160NOPARTWITHGRIPPER1CLOSEDVERIFYV14-5”。这是指未抓起工件报警。但实际上抓工件的机械手已将工件抓起,却显示机械手未抓起工件报警。查阅PLC图,此故障是测量感应开关发出的。经查机械手部位,机械手工作行程不到位,未完全压下感应开关引起的。随后调整机械手的夹紧力,此故障排除。 5.4:一台立式加工中心采用FANUC-OM控制系统。机床在自动方式下执行到X轴快速移动时就

39、出现414和410报警。此报警是速度控制OFF和X轴伺服驱动异常。由于此故障出现后能通过重新启动消除,但每执行到X轴快速移动时就报警。经查该伺服电机电源线插头因电弧爬行而引起相间短路,经修整后此故障排除。 5.5:操作者操作不当也是引起故障的重要原因。如我厂另一台采用840C系统的数控车床,第一天工作时完全正常,而第二天上班时却无论如何也开不了机,工作方式一转到自动方式下就报警“EMPTYINGSELECTEDMOOESELECTOR”。加工完工件后,主轴不停,机械手就去抓取工件,后来仔细检查各部位都无毛病,而是自动工作条件下的一个模式开关位置错了。所以,当有些故障原因不明的报警出现的话,一定

40、要检查各工作方式下的开关位置。 还有些故障不产生故障报警信息,只是动作不能完成,这时就要根据维修经验、机床的工作原理和PLC运行状况来分析判断了。对于数控机床的修理,重要的是发现问题。特别是数控机床的外部故障。有时诊断过程比较复杂,但一旦发现问题所在,解决起来比较简单。对外部故障诊断应遵从以下两条原则。首先要熟练掌握机床的工作原理和动作顺序。其次,要会利用PLC梯形图。NC系统的状态显示功能或机外编程器监测PLC的运行状态,一般只要遵从以上原则,小心谨慎,一般的数控故障都会及时排除。案例小结通过这次故障维护可见,为了能够充分发挥数控机床功能多、柔性强、加工精度高、自动化程度高的优势,生产出高质

41、量的产品,以适应市场竞争的需要,就必须注意加强数控机床的维护工作。具体应做到如下几点:(1)保证数控设备的使用环境良好,符合产品规定的要求。(2)注意数控设备使用电源的维护。特别当增减旁边共用交流电源的大容量设备时,必须观察是否产生瞬时干扰信号,防止它破坏机内的程序或参数,甚至造成死机,影响机床的正常运行。(3)数控设备应有操作规程。特别防止机床操作员随意修改内部参数。(4)应有维修记录。一般机床故障都具有规律性(如常发故障),维修记录对今后工作具有指导意义。(5)要加强有关数控设备技术人员和操作员的培训工作,结合理论和实践来提高他们的综合业务素质。 参考文献1孙汉卿主编.数控机床维修技术.北

42、京:机械工业出版社,2002.2毕承恩,丁乃健主编.现代数控机床.北京:机械工业出版社,1991.3李福生主编.实用数控机床技术手册.北京:北京出版社,1993.4吴祖育,秦鹏飞主编.数控机床.上海:上海科技出版社,1990.5熊光华主编.数控机床.北京:机械工业出版社,2001.6刘希金主编.机床数控系统故障检测与维修.北京:兵器工业出版社,1995.7郭士义主编.数控机床故障诊断与维修.北京:机械工业出版社,2005.致 谢本论文是在我的导师廖茂珍老师的亲切关怀和悉心指导下完成的。她严肃的科学态度,严谨的治学精神,精益求精的工作作风,深深地感染和激励着我。老师不仅在学业上给我以精心指导,同时还在思想、生活上给我以无微不至的关怀,在此谨向老师致以诚挚的谢意和崇高的敬意。我还要感谢在一起愉快的度过毕业论文小组的同学们,正是由于你们的帮助和支持,我才能克服一个一个的困难和疑惑,直至本文的顺利完成。将完成之际,我的心情无法平静,从开始进入课题到论文的顺利完成,有多少可敬的师长、同学、朋友给了我无言的帮助,在这里请接受我诚挚的谢意!最后我还要感谢培养我长大含辛茹苦的父母,谢谢你们! 最后,再次对关心、帮助我的老师和同学表示衷心地感谢!THANKS !致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求欢迎您的下载,资料仅供参考-可编辑修改-

展开阅读全文
相似文档                                   自信AI助手自信AI助手
猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服