资源描述
《3.3解一元一次方程(二)去分母》导学案
班级_______姓名_______小组_______小组评价_______教师评价_____
【学习目标】1.会运用等式性质2正确去分母解一元一次方程;
2.通过掌握解一元一次方程的一般步骤、方法,培养学生.分析问题、解决问题的能力.
【学习重点】去分母解一元一次方程.
【学习内容】教材96-97页
【学习过程】
一、 知识回顾:
1. 求下列各数的最小公倍数:
(1)2,3 ,6 (2)3,4,8 (3) 4,6,18
2.等式的性质2:等式两边乘 数,或除以 的数,结果仍 。
3.我们已经学习解一元一次方程的步骤有哪些?
(1)_____________;(2)______________;(3)_______________;(4)________________.
4. 解方程: (你有哪些方法?)
变式: 思考怎样解这个的方程?
二、 探究新知:
1.由上可知:一元一次方程中有分数系数时,先把分数化为整数,这种变形叫做______;其依据是______
2.试一试: 解方程: ※去分母时的注意事项:
①方程两边应乘以各分母的 公倍数;
②不要漏乘 的项;
③分数线有括号作用,去掉分母后,若
分子是一个多项式,要加______,把多项
式看作一个整体。
归纳:※含有分母的方程的解法的一般步骤为:
①___________,②___________,③___________,④合并_________,⑤系数化为_____.
三、即时练习:(规范书写格式)
1.解方程-1=,去分母时,方程两边都乘以( )
A.10 B.12 C.24 D.6
2. 方程3-=0可以变形为( )
A.3-1-x=0 B.6-1-x=0 C.6-1+x=0 D.6-1+x=2
3.解下列方程(选2做):
(1)= (2)-1= (3)
4. 当x为何值时,代数式4x-5与的值相等?
※5.(滨州中考)依据下列解方程=的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据.
解:原方程可变形为=.(________________)
去分母,得3(3x+5)=2(2x-1).(____________)
去括号,得9x+15=4x-2.(________________)
(________),得9x-4x=-15-2.(____________)
合并同类项,得5x=-17.
(____________),得x=-.(____________)
※6.如果规定“*”的意义为a*b=(其中a,b为有理数),那么方程3*x=的解是x=________.
四、 小结:
五、 当堂检测:
1.解方程,去分母正确的是( )
A.2(x-3)-(1+2x) = 1 B.(x-3)-(1+2x)= 8 C.2x-3-1-2x= 8 D.2(x-3)-(1+2x)=8
2.当x= 时,式子的值为 -1 。
3.解方程:
(1)= (2)=1-
展开阅读全文