1、第六章 一次函数一次函数的图象(二)教案张玉贞教学目标l 知识与技能目标1.了解一次函数两个变量之间的变化规律; 2.在认识一次函数图象的基础上,掌握一次函数图象及其简单性质.l 过程与方法目标: 1.经历对一次函数图象变化规律的探究过程,在探究中学会解决一次函数问题的一些基本方法和策略;2.在结合图象探究一次函数性质的过程中,增强学生数形结合的意识,渗透分类讨论的思想;3.通过对一次函数图象及性质的探究,在探究中培养学生的观察能力、识图能力以及语言表达能力.l 情感与态度目标:1.在一次函数图象及性质的探究过程中,培养学生联系实际、善于观察、勇于探索和勤于思考的精神;2.在合作与交流活动中发
2、展学生的合作意识和团队精神,在探究活动中获得成功的体验. 教学重点结合一次函数的图象,探究一次函数的简单性质.教学难点一次函数图象变化规律及特点的探究过程及建立数形结合和分类讨论的思想.教法学法1.教学方法:“探究归纳总结运用”2.课前准备:教具:教材,课件,电脑学具:教材,铅笔,直尺,练习本教学过程本节课设计了六个教学环节:第一环节: 图片展示;第二环节:复习引入;第三环节:活动探究;第四环节:反馈练习与知识拓展;第五环节:课时小结;第六环节:作业布置.一.创设情境内容:展示一些与实际生活息息相关的图片.说明在我们生活中,有许许多多这样的图案,这些图象当中蕴含着某些规律,人们利用这些规律,能
3、更合理地作出决策或预测. 意图:通过富有现实意义的图片展示,引入生活中熟悉的图片,使学生感受到图象里蕴含的某些规律可以使人们作出合理、科学的决策,激发学生的求知欲望,感受图象的实用价值.说明:通过欣赏这些生活中的图象,学生感受到图象中所蕴含的规律,激发了学生的好奇心和求知欲.二.复习引入 内容:在前面,我们已经学会了绘制一次函数图象,那么一次函数图象中又蕴含着什么规律,这节课我们就来研究一次函数图象的性质.首先,我们来复习一下上节课所学习的知识.复习提问:(1)作函数图象有几个主要步骤? (2)上节课中我们探究得到一次函数图象有什么特征?(3)作一次函数图象需要描出几个点?意图:学生回顾上节课
4、学习的内容,为进一步研究一次函数的图象和性质做好铺垫.在上节课的探究中我们得到一次函数的图象是一条直线,其中正比例函数图象是过原点的一条直线.当b0时,一次函数图象与y轴正半轴相交,当b0时,直线必过一、二、三象限; 当b0时,直线必过一、二、四象限; 当b0时,k的值越大,直线与x轴的正方向所成的锐角越大. 同一平面内,不重合的两条直线与 当时,; 当时,与相交.意图:问题(1)在教材中是放在一次函数图象的第一节课,根据教学安排,我们把这个内容调整到了本节课.经过自主探究、合作交流,力图让学生对两直线的位置关系及,的几何意义作进一步的探讨,感受在具体图象中平行、相交等位置关系以及函数图象中函
5、数值的增减速度与k值之间的联系. 说明:学生通过讨论,得出所观察到的图象的规律,在教师的引导下,逐步加深对一xyO次函数图象及性质的认识.内容3:比一比,看谁画得快一次函数的图象如图所示, 你能画出函数的图象吗?意图:学生作图(学生可能按常规过两点作直线,也可能利用两直线的位置关系,过直线外一点作已知直线的平行线).利用所学的知识反过来解决了作图问题,再次强调了数形结合的思想.说明:通过探究,学生已经了解了一次函数图象的特点.根据一次函数图象的特点,学生能较容易的完成此题.3归纳总结,认识规律内容:归纳总结一次函数图象的特点:1.在一次函数y=kx+b中当时,随的增大而增大,当b0时,直线必过
6、一、二、三象限; 当b0时,直线必过一、二、四象限; 当b0时,k的值越大,直线与x轴的正方向所成的锐角越大. 3. 同一平面内,不重合的两条直线与 当时,; 当时,与相交.意图:通过师生、生生互动,共同总结,使学生再次明确一次函数图象的特点,为下个环节的知识运用作好准备.说明:通过教师的引导,学生之间的相互补充,完善,很容易归纳出一次函数图象的特点.四.反馈练习内容:1.你能找出下列四个一次函数对应的图象吗?请说出你的理由: (1); (2);(3); (4).2.(1)判断下列各组直线的位置关系:(A)与;(B)与.(2)已知直线与一条经过原点的直线平行,则这条直线的函数关系式为 .Oxy
7、3.(1)一次函数的图象经过 象限,随的增大而 ;(2)一次函数的图象如图所示,则下列结论正确的是( ) 4.小明骑车从家到学校,假设途中他始终保持相同的速度前进,那么小明离家的距离与他骑行时间的图象是下图中的 ;小明离学校的距离与他骑行时间的图象是下图中的 .515515 答案:1.四个图象对应的函数关系式分别为:(3)、(1)、(2)、(4).2.(1)平行,相交;(2).3.(1)二、四,减小;(2)B. 4. B,A.意图:四组练习,旨在检测学生对一次函数的图象和性质的掌握情况.可根据学生情况和上课情况适当调整.若学生在回答第1题时有困难,可先引导学生完成分层教学中基础训练1、2题,若
8、学生完成上述练习比较顺利,可根据上课时间适当选择分层教学中提高训练或知识拓展完成.说明:四组练习注意了问题的梯度,由浅入深,一步步加深学生对一次函数图象及性质的认识.对同学的回答,教师给予点评,对回答问题暂时有困难的同学,教师应帮助他们树立信心.五.课时小结内容:本节课我们结合一次函数的图象对一次函数的一些简单性质进行了探讨,通过这节课,我们学习了以下内容:1一次函数中,当时,的值随的增大而增大,图象经过一、三象限;当时,的值随的增大而减小,图象经过二、四象限.2同一平面内,不重合的两条直线与当时,;当时,与相交.用到了以下的数学思想和基本方法:1本节课中用到的数学思想:数形结合、分类讨论.2本节课中用到的基本方法:通过观察、操作、猜想、推理、类比、归纳等过程获取数学知识.意图:引导学生自己小结本节课的知识要点及数学思想、方法,教师再补充完善,使知识系统化.说明:学生畅所欲言,相互进行补充,能用自己的话进行归纳总结.六.作业布置习题6.4课外探究当x0时,y与x的关系式y=5x;当x0时,y=-5x,则它们在同一直角坐标系中大致图象是( )七.板书设计一次函数的图象(二)一次函数的性质 做一做(1) (1)(2) (2) (3) 暂时性板书保留性板书