资源描述
通用版带答案高中物理必修三第九章静电场及其应用微公式版全部重要知识点
1
单选题
1、短道速滑接力赛是冰上运动竞争最为激烈的项目之一。比赛规定,前(甲)、后(乙)队员必须通过身体接触完成交接,交接时两队员间距离先缩短到很近,如图(a),然后乙队员用手大力推送甲队员到手臂尽量伸直状态,两人分离,如图(b)。相互作用前后的系统(由两队员组成)的总动能分别为Ek1、Ek2,总动能变化量ΔEk=|Ek1-Ek2|,乙队员对甲队员的平均作用力为F1,甲队员对乙队员的平均作用力为F2,乙队员的手臂长为l,冰道摩擦力不计,那么( )
A.Ek1<Ek2,ΔEk=F2l
B.Ek1>Ek2,ΔEk=12F1l
C.Ek1<Ek2,ΔEk=12F2l
D.Ek1>Ek2,ΔEk=F1l
答案:A
设甲、乙的初始动能分别为E、E1,末动能分别为E'、E1',甲乙两运动员从接触到分开,乙的位移大小为x,根据动能定理,对甲、乙分别列方程有
E'-E=F1(x+l)
E1'-E1=-F2x
根据牛顿第三定律,F1与F2的大小相等,则有
(E'+E1')-(E+E1)=Ek2-Ek1=ΔEk=F2l
可知有
Ek2>Ek1
ΔEk=F2l
故BCD错误,A正确。
故选A。
2、关于机械能,以下说法正确的是( )
A.质量大的物体,重力势能一定大
B.速度大的物体,动能一定大
C.做平抛运动的物体机械能时刻在变化
D.质量和速率都相同的物体,动能一定相同
答案:D
A.重力势能的大小与零势能面的选取有关,质量大但重力势能不一定大,A错误;
B.动能的大小与质量以及速度有关,所以速度大小,动能不一定大,B错误;
C.平抛运动过程中只受重力作用,机械能守恒,C错误;
D.根据
Ek=12mv2
可知质量和速率都相同的物体,动能一定相同,D正确。
故选D。
3、如图所示。固定在竖直平面内的光滑的圆14周轨道MN,圆心O与M点等高。并处在最低点N的正上方。在O,M两点各有一质量为m的小物块a和b(均可视为质点)。a,b同时由静止开始运动,a自由下落,小沿圆弧下滑。空气阻力不计,下列说法正确的是( )
A.a比b先到达N点,它们到达N点的动能相同
B.a比b先到达N点,它们到达N点的动能不同
C.a与b同时到达N点,它们到达N点的动能相同
D.a与b同时到达N点,它们到达N点的动能不同
答案:A
在物块下降的过程,根据机械能守恒有
mgh=12mv2
所以a、b两物块到达同一高度时的速度大小都相同,由于a和b 质量相同,所以到N点的动能相同;
下降同一很小高度的过程中,a的竖直方向的位移小于b沿圆弧切线方向的位移,a、b的初速度大小相同, a的加速度为g,b沿圆弧运动时,把重力沿圆弧切线和垂直切线方向分解,除M点外,b所受得切线方向的外力小于重力,则b沿切线方向的加速度小于g ,由
x=v0t+12at2
可得,a的运动时间较短,所以a比b先到达N点,故A项正确。
故选A。
4、2020年9月21日,我国在酒泉卫星发射中心用长征四号乙运载火箭,成功将海洋二号C卫星送入预定轨道做匀速圆周运动。已该卫星的轨道半径为7400km,则下列说法中正确的是( )
A.可以计算海洋二号C卫星的线速度B.可以计算海洋二号C卫星的动能
C.可以计算海洋二号C卫星的机械能D.可以计算海洋二号C卫星的质量
答案:A
A.根据
GMmr2=mv2r
又由于
GM=gR2
整理可得
v=gR2r
由于地球表面的重力加速度g,地球半径R以及卫星的轨道半径r已知,因此可求出卫星的运行的线速度,A正确;
BCD.由于无法求出卫星的质量,因此卫星的机械能,动能都无法求出,BCD错误。
故选A。
5、有一辆质量为170kg、输出功率为1440W的太阳能试验汽车,安装有约6m2的太阳能电池板和蓄能电池,该电池板在有效光照条件下单位面积输出的电功率为30W/m2。驾驶员的质量为70kg,汽车最大行驶速度为90km/h。假设汽车行驶时受到的阻力与其速度成正比,则汽车( )
A.以最大速度行驶时牵引力大小为60N
B.以额定功率启动时的加速度大小为0.24m/s2
C.保持最大速度行驶1h至少需要有效光照8h
D.直接用太阳能电池板输出的功率可获得6m/s的最大行驶速度
答案:C
A.根据
P额=Fvmax
可得
F=P额vmax=1440903.6N=57.6N
故A错误;
B.以额定功率启动时,由牛顿第二定律有
Pv-Ff=ma
而刚启动时速度v为零,则阻力Ff也为零,故刚启动时加速度趋近于无穷大,故B错误;
C.由能量守恒得
W=Pt=1440W×1h=30×6W×t
解得
t=8h
即保持最大速度行驶1h至少需要有效光照8h,故C正确;
D.由题意,汽车行驶时受到的阻力与其速度成正比,设
Ff=kv
达到最大速度时有57.6=k×903.6
解得
k=2.304
当直接用太阳能电池板输出的功率行驶且有最大速度时,则有
30×6v'=kv′
解得
v′≈8.84m/s
故D错误。
故选C。
6、如图甲所示,绷紧的水平传送带始终以恒定速率v1运行,初速度大小为v2的小物块从与传送带等高的光滑水平地面上的A处滑上传送带。若从小物块滑上传送带开始计时,小物块在传送带上运动的v-t图象(以地面为参考系)如图乙所示。已知v2>v1,物块和传送带间的动摩擦因数为μ,物块的质量为m。则( )
A.t2时刻,小物块离A处的距离最大
B.0∼t2时间内,小物块的加速度方向先向右后向左
C.0∼t2时间内,因摩擦产生的热量为μmgv12(t2+t1)+v2t12
D.0∼t2时间内,物块在传送带上留下的划痕为v2+v12t1+t2
答案:C
A.初速度大小为v2的小物块从与传送带等高的光滑水平地面上的A处滑上传送带,小物块在传送带上运动的v-t图象可知,t1时刻,小物块离A处的距离达到最大,A错误;
B.0~t2时间内,小物块受到的摩擦力方向一直向右,所以小物块的加速度方向一直向右,B错误;
CD.0~t1时间内物体相对地面向左的位移
s1=v22t1
这段时间传送带向右的位移
s2=v1t1
因此物体相对传送带的位移
Δs1=s1+s2=v22t1+v1t1
t1~t2时间内物体相对地面向右的位移
s1'=v12(t2-t1)
这段时间传送带向右的位移
s2'=v1(t2-t1)
因此物体相对传送带的位移
Δs2=s2'-s1'=v12(t2-t1)
0∼t2时间内物块在传送带上留下的划痕为
Δs=Δs1+Δs2=v12(t2+t1)+v2t12
0~t2这段时间内,因此摩擦产生的热量
Q=μmg×Δs=μmgv12(t2+t1)+v2t12
C正确,D错误。
故选C。
7、在地球表面将甲小球从某一高度处由静止释放,在某行星表面将乙小球也从该高度处由静止释放,小球下落过程中动能Ek随时间平方t2的变化关系如图所示。已知乙球质量为甲球的2倍,该行星可视为半径为R的均匀球体,地球表面重力加速度为g,引力常量为G,则( )
A.乙球质量为2bg2aB.该行星表面的重力加速度为22g
C.该行星的质量为gR22GD.该行星的第一宇宙速度为gR2
答案:C
A.小球在地球表面下落过程中任一时刻的速度大小为
v=gt
小球的动能为
Ek=12mg2t2
由图可知
ba=12mg2
解得甲球质量为
m=2bg2a
则乙球质量为
m乙=4bg2a
故A错误;
B.同理在行星表面有
b2a=12×2mg'2
解得
g'=12g
故B错误;
C.设该行星的质量为M',则有
2mg'=GM'⋅2mR2
解得
M'=gR22G
故C正确;
D.由
mg'=mv2R
得
v=g'R
可得该行星的第一宇宙速度为
v=gR2
故D错误。
故选C。
8、如图中a、b所示,是一辆质量m=6×103kg的公共汽车在t=0和t=4s末两个时刻的两张照片。当t=0时,汽车刚启动(汽车的运动可看成匀加速直线运动)。图c是车内横杆上悬挂的拉手环经放大后的图像,测得θ=30°,根据题中提供的信息,不可以估算出的物理量有( )
A.汽车的长度B.4s末汽车的速度
C.4s末汽车合外力的功率D.4s内汽车牵引力所做的功
答案:D
A.由图知,4s内汽车的位移刚好等于汽车的长度,由
x=12at2
对拉手环进行受力分析如上图所示,得到
mamg=tan30°,a=gtan30°
联立得到
x=12at2=12×10×33×42≈46m
故A错误;
B.由
v=at=10×33×4m/s≈23m/s
故B错误;
C.由
F=ma=6×103×10×33N≈3.46×104N
所以4s末汽车的功率为
P=Fv=3.46×104×23W=7.97×105W
故C错误;
D.因不知汽车的摩擦力,所以无法求汽车的牵引力,即不能估算4s内汽车牵引力所做的功,故D正确。
故选D。
9、如图所示,在光滑地面上,水平外力F拉动小车和木块一起做无相对滑动的加速运动。小车质量是M,木块质量是m,力的大小是F,加速度大小是a,木块和小车之间动摩擦因数是μ,则在木块运动L的过程中,木块受到的摩擦力对木块做的功是( )
①μmgL ②maL ③mFM+mL
A.只有①对B.只有②对
C.只有③对D.②③都对
答案:D
对M、m组成整体分析
F=(M+m)a
a=FM+m
木块受到的静摩擦力
f=ma=mFM+m
摩擦力对木块做的功
W=fL=maL=mFLM+m
故选D。
10、全运会小轮车泥地竞速赛赛道由半径为R的14圆弧组成,如图所示,选手从赛道顶端A由静止无动力出发冲到坡底B,设阻力大小不变恒为f,始终与速度方向相反,且满足f=mgπ,选手和车总质量为m,重力加速度为g,路程SBC=2SAC。则选手通过C点的速度为( )
A.π-1πgRB.π-22-3πgRC.33-13gRD.23gR
答案:D
根据圆的弧长计算公式可知,从A到C,选手和车运动的路程为
S=2πR×14×13=πR6
根据力的做功公式可知,克服阻力做功为
Wf=F⋅s=mgπ×πR6=mgR6
选手从A到C受到重力与阻力做功,所以由动能定理可得
mgRsin90∘3-Wf=12mv2-0
解得
v=23gR
故D正确,ABC错误。
故选D。
11、如图所示,轻质弹簧的一端与固定的竖直板P拴接,另一端与物体A相连,物体A置于光滑水平桌面上(桌面足够大),A右端连接一细线,细线绕过光滑的定滑轮与物体B相连。开始时托住B,让A处于静止且细线恰好伸直,然后由静止释放B,直至B获得最大速度。下列有关该过程的分析中正确的是( )
A.B物体受到细线的拉力保持不变
B.B物体机械能的减少量大于弹簧弹性势能的增加量
C.A物体动能的增量等于B物体重力对B做的功与弹簧弹力对A做的功之和
D.A物体与弹簧所组成的系统机械能的增加量等于B物体重力对B做的功
答案:B
A.以A、B组成的系统为研究对象,根据牛顿第二定律可得
mBg﹣kx=(mA+mB)a
从开始到B速度达到最大的过程中,弹簧的伸长量x逐渐增加,则B加速度逐渐减小;对B根据牛顿第二定律可得
mBg﹣T=mBa
可知在此过程绳子上拉力逐渐增大,是变力。故A错误;
B.整个系统中,根据功能关系可知,B减小的机械能转化为A的机械能以及弹簧的弹性势能,故B物体机械能的减少量大于弹簧弹性势能的增加量。故B正确;
C.根据动能定理可知,A物体动能的增量等于弹簧弹力和绳子上拉力对A所做功的代数和。故C错误;
D.根据机械能守恒定律可知,A物体与弹簧所组成的系统机械能的增加量等于B物体机械能的减少量,也就是等于B物体克服细绳拉力做的功。故D错误。
故选B。
12、复兴号动车在世界上首次实现了速度350km/h自动驾驶功能,成为我国高铁自主创新的又一重大标志性成果。已知一列质量为m的动车,以恒定功率P在平直轨道上行驶,当其达到最大速度vm时,其阻力f可表示为( )
A.f=PvmB.f=vmP
C.f=PvmD.f=mvm22P
答案:C
当动车达到最大速度vm时,动车受力平衡,即
F=f
P=Fvm
解得
f=Pvm
故选C。
13、如图,质量不同的A、B两小球分别用细线悬挂在等高的悬点O1、O2处。将两球拉至与悬点同一高度,使细线水平伸直,由静止释放。已知LA>LB,设悬点所在水平面为零势能面,不计空气阻力,则两球运动到最低点时( )
A.A球动能大于B球动能
B.A球机械能与B球机械能不相等
C.A球加速度等于B球加速度
D.A球向心力等于B球向心力
答案:C
A.根据机械能守恒有
mgL=12mv2
但由于不能明确质量关系,故无法确定两球的动能大小关系。故A错误;
B.A、B两球在初始位置的动能重力与势能均为零,机械能相等都等于零,运动的过程中,只有重力做功,机械能守恒,故两球运动到最低点时机械能相等都等于零。故B错误;
C.根据机械能守恒解得
v=2gL
而向心加速度
a=v2L=2g
故向心加速度与绳长无关,故两球的向心加速度相等。故C正确;
D.根据向心力公式
F=mv2L
可得,向心力
F=2mg
因两球的质量不相等,故向心力不相等。故D错误。
故选C。
14、关于机械能和机械能守恒,下列说法正确的是( )
A.物体质量越大,其机械能越大
B.机械能是标量,但可能取负值
C.机械能守恒时,物体一定处于平衡状态
D.重力对物体做正功时,物体机械能增加
答案:B
A.物体质量越大,物体的动能和重力势能不一定越大,则机械能不一定越大,A错误;
B.机械能是标量,但可能取负值,B正确;
C.机械能守恒时,物体不一定处于平衡状态,比如自由落体运动的物体,机械能守恒,C错误;
D.重力对物体做正功时,物体机械能不一定增加,比如自由落体运动的物体,机械能守恒,D错误。
故选B。
15、如图所示,一质量为1kg的物体以3m/s的速度从A点沿AB圆弧下滑,滑到B点时的速度仍为3m/s,则物体从A到B的过程中合外力做功为( )
A.4.5JB.0C.9JD.无法计算
答案:B
由动能定理可知,合外力做功为
W=12mvB2-12mvA2=0
故选B。
多选题
16、如图所示,乒乓球以较大速度从地面竖直向上抛出,若球所受空气阻力与速率成正比,且乒乓球在落回地面前已趋于匀速。取地面为重力势能零势能面,则乒乓球在空中运动过程中,其动能及重力势能随时间变化的图象可能正确的是( )
A.B.
C.D.
答案:BC
AB.乒乓球上升阶段,设某一很短时间Δt内速度大小为v,则阻力
f=kv
发生的位移为
Δx=vΔt
由动能定理有
-mg+fΔx=ΔEk
可得
ΔEkΔt=-mg+kvv
上升过程,速度逐渐减小,ΔEkΔt的绝对值逐渐减小,即Ek-t图线切线的斜率的绝对值减小,到达最高点时,速度减为0,斜率也为0,同理,下降阶段有
ΔEkΔt=mg-kv'v'
下降过程乒乓球速度大小逐渐增加,所受合力逐渐减小,最后乒乓球趋于匀速,所受合力趋于0,ΔEkΔt的绝对值从0先增加然后减小最终趋于0,A错误,B正确;
CD.上升阶段结合上述分析,有
mgΔx=ΔEp
有
ΔEpΔt=mgv
上升阶段速度逐渐减小,ΔEpΔt的绝对值逐渐减小,即Ep-t图线斜率逐渐减小,到达最高点时,速度减为0,Ep-t图线斜率也为0,同理,下降阶段有
ΔEpΔt=-mgv'
速度大小逐渐增加,图线斜率绝对值逐渐增大,C正确,D错误。
故选BC。
17、如图甲、乙所示有两个物块A、B,质量分别为m1、m2,m2=2m1=2m,甲图中用轻绳将两物块连接在滑轮组上,乙图中用轻绳将两物块连接放在固定光滑斜面上,斜面倾角为30°,滑轮的质量不计,轻绳与滑轮的摩擦也不计,重力加速度为g。现将两物块从静止释放,物块A上升一小段距离h,在这一过程中,下列说法正确的是( )
A.甲、乙两图中,两物块的重力势能之和均不变
B.甲图中,A物块上升到h高度时的速度为2gh3
C.甲图中,轻绳对两物块做的功率大小不相等
D.甲、乙两图中,轻绳的拉力大小分别为2mg3和mg
答案:BD
A.根据机械能守恒可知,B物块减小的重力势能全部转化为A物块的重力势能和两物块的动能,则两物块的重力势能之和发生变化,选项A错误;
B.题图甲中,根据动滑轮的特点可知,B物块的速度为A物块速度的2倍,根据动能定理可得
m2g⋅2h-m1gh=12m2v22+12m1v12
解得
v1=2gh3
选项B正确;
C.题图甲中同一根轻绳的拉力相同,故轻绳对B物块做功的功率
P2=Fv2
轻绳对A物块做功的功率
P1=2F⋅v1
由于
v2=2v1
故轻绳对B物块做功的功率与轻绳对A物块做功的功率大小相等,选项C错误;
D.对题图甲中两物块,根据动滑轮的特点可知,A物块的加速度为B物块的加速度的一半,根据牛顿第二定律可知
2F-m1g=m1a
m2g-F=m2a',a'=2a
联立解得
F=2mg3
对题图乙中两物块,根据牛顿第二定律可知
F'-m1gsin30°=m1a1
m2g-F'=m2a'1,a'1=a1
解得
F'=mg
选项D正确。
故选BD。
18、我国未来的航母将采用自行研制的电磁弹射器。电磁弹射系统由电源、强迫储能装置、导轨和脉冲发生器等组成。其工作原理如图所示,利用与飞机连接的通电导体在两平行金属导轨的强电流产生的磁场中受到安培力的作用加速获得动能。设飞机质量为1.8×104 kg,起飞速度为v=70 m/s,起飞过程中所受平均阻力恒为机重的15,在没有电磁弹射器的情况下,飞机从静止开始在恒定的牵引力作用下运动,起飞距离为l=210 m;在电磁弹射器与飞机发动机(牵引力不变)同时工作的情况下,起飞距离减为l3,则(g取10 m/s2)( )
A.在没有电磁弹射器的情况下,飞机所受牵引力2.46×105 N
B.在没有电磁弹射器的情况下,飞机所受牵引力2.1×105 N
C.在电磁弹射器与飞机发动机同时工作时,若只增大电流,则起飞的距离将更小
D.在电磁弹射器与飞机发动机同时工作时,电磁弹射器对飞机所做的功2.94×108 J
答案:AC
AB.没有电磁弹射器时,由动能定理可得
(F-15mg)l=12mv2
所以飞机所受的牵引力
F=2.46×105 N
选项A正确,B错误;
C.在电磁弹射器与飞机发动机同时工作时,若只增大电流,由于飞机所受的安培力增大,故起飞的距离将更小,选项C正确;
D.电磁弹射器和飞机发动机同时工作时,由动能定理得
W+(F-15mg)⋅l3=12mv2
所以
W=2.94×107 J
选项D错误。
故选AC。
19、小明坐在半球形轨道顶端玩耍,突然被小伙伴推了一下,沿球面向下滑动。半球形轨道横截面示意图如图所示。假设球面是光滑的,球半径为R,从最高点A滑动时的水平速度为v0,至B点时脱离轨道,最终落在水平地面上的C点,OA和OB间的夹角为θ,不计空气阻力,重力加速度为g。下列说法中正确的是( )
A.从A到B的过程中,小明水平方向的加速度先减小后增大
B.在B点时,小明的速度为gRcosθ
C.cosθ=23+v023gR
D.从A到C的过程中,小明运动的时间大于2Rg
答案:BCD
A.小明从A到B的过程中,在A点水平方向的加速度为零,下落到B点之前水平方向有加速度,到达B点时水平方向的加速度为零,故从A到B的过程中,小明水平方向的加速度先增大后减小,故A错误;
B.在B点时,对小明受力分析可知,小明受到的重力沿指向圆心方向的分力提供向心力,根据牛顿第二定律有
mgcosθ=mv2R
解得小明在B点的速度为
v=gRcosθ
故B正确;
C.对小明从A到B的过程根据动能定理有
mgR(1-cosθ)=12mv2-12mv02
解得
cosθ=23+v023gR
故C正确;
D.若小明从A到C做自由落体运动,则运动时间
t'=2Rg
但由于从A到B的过程中,小明竖直方向的加速度小于g,故小明从A到C运动的时间
t>2Rg
故D正确。
故选BCD。
20、如图所示,左侧为一固定在水平桌面上的半径为R的半球形碗,碗口直径AB水平,O点为球心,碗的内表面及碗口光滑。右侧是一个足够长的固定光滑斜面。一根不可伸长的轻质细绳跨过碗口及竖直固定的轻质光滑定滑轮,细绳两端分别系有可视为质点的小球m1和物块m2,质量分别为m1、m2,且m1>m2.开始时m1恰在A点,m2在斜面上且距离斜面顶端足够远,此时连接m1、m2的细绳与斜面平行且伸直,C点在圆心O的正下方。当m1由静止释放开始运动,则下列说法正确的是( )
A.m2沿斜面上滑过程中,地面对斜面的支持力始终保持恒定
B.当m1运动到C点时,m1的速率是m2速率的2倍
C.若细绳在m1到达C点时断开,m1可能沿碗面上升到B点
D.在m1从A点运动到C点的过程中,m1与m2组成的系统机械能守恒
答案:ABD
A.m2沿斜面上滑过程中,m2对斜面的压力始终不变,斜面所受重力不变,且一直处于平衡状态,则地面对斜面的支持力也始终不变,A正确;
B.小球m1到达最低点C时,m1、m2的速度大小分别为v1、v2,由运动的合成与分解得
v1cos45°=v2
则
v1=2v2
B正确;
C.m1由静止从A点运动到C点的过程中,除重力外,绳的拉力对m1做负功,m1的机械能一直在减小,所以细绳断开后,m1不能上升到B点,C错误;
D.m1从A点运动到C点的过程中,m1和m2组成的系统只有重力做功,机械能守恒,D正确;
故选ABD。
21、如果汽车以额定功率P由静止出发,沿平直路面行驶,受到的阻力恒为Ff,则下列判断正确的是( )
A.汽车行驶的最大速度为vmax=PFf
B.汽车先做匀加速运动,最后做匀速运动
C.汽车先做加速度越来越小的加速运动,最后做匀速运动
D.汽车先做匀加速运动,再做匀减速运动,最后做匀速运动
答案:AC
A.汽车以最大速度行驶时,牵引力与阻力大小相等,所以汽车行驶的最大速度为
vmax=PF=PFf
故A正确;
BCD.汽车以额定功率启动,根据P=Fv可知随着速度的增大,牵引力减小,而阻力不变,则汽车所受合外力减小,加速度减小,所以汽车先做加速度越来越小的加速运动,当加速度最后减小至零后,汽车做匀速运动,故C正确,BD错误。
故选AC。
22、如图所示,位于竖直平面内的固定光滑圆环轨道与水平面相切于M点,与竖直墙相切于A点,竖直墙上另一点B与M的连线和水平面的夹角为60°,C是圆环轨道的圆心,已知在同一时刻,甲、乙两球分别由A、B两点从静止开始沿光滑倾斜直轨道AM、BM运动到M点,丙球由C点自由下落到M点,有关下列说法正确的是( )
A.甲球下滑的加速度大于乙球下滑的加速度
B.丙球最先到达M点
C.甲、乙、丙球同时到达M点
D.甲、丙两球到达M点时的速率相等
答案:BD
A.设光滑倾斜轨道与水平面的夹角为θ,根据牛顿第二定律可得加速度
a=mgsinθm=gsinθ
可知乙球的加速度大于甲球的加速度。故A错误。
BC.对于AM段,位移
x1=2R
加速度
a1=gsin45°=22g
则根据
x=12at2
得
t1=2x1a1=4Rg
对于BM段,位移
x2=2R
加速度
a2=gsin60∘=32g
t2=2x2a2=8R3g
对于CM段,位移
x3=R
加速度
a3=g
则
t3=2Rg
知t3最小,故B正确,C错误。
D.根据动能定理得
mgh=12mv2
甲,丙高度相同,则到达M的速率相等,故D正确。
故选BD。
23、滑板项目是极限运动历史的鼻祖,许多的极限运动项目均由滑板项目延伸而来。如图所示为滑板运动场地的示意图,场地是圆心角为θ=120°的圆弧面,A、C等高,B为最低点,滑板与场地之间的动摩擦因数μ=32,且处处相同。现运动员和滑板车一起由A点以一定的初速度沿圆弧面向下滑,且恰能到达C点,重力加速度用g表示。下列说法中正确的是( )
A.运动员在C点时的加速度为34g
B.运动员在下滑过程中,重力的功率一直在增大
C.运动员由A到B过程中与由B到C过程中摩擦力做的功相等
D.运动员在整个运动过程中机械能一直在减少
答案:AD
A.对运动员在C点受力分析有
mgsin60∘-μmgcos60∘=ma
解得
a=34g
选项A正确;
B.在下滑到最低点B时,此时vB⊥mg,则重力的功率为零,所以重力的功率先增大后减小,选项B错误;
C.运动员由A到C过程中,在同一等高处右边的速度始终大于左边的速度,则其对右边圆弧面的压力始终大于对左边圆弧面的压力,故运动员在右边圆弧面受到的摩擦力始终大于在左边圆弧面受到的摩擦力,因此右边摩擦力做的功大于左边摩擦力做的功,选项C错误;
D.由于摩擦力一直做负功,所以运动员的机械能一直在减少,选项D正确。
故选AD。
24、篮球运动员的定点跳投动作可分解如下:静止在地面上的运动员先屈腿下蹲,然后突然蹬地,重心上升双脚离开地面,离地后重心继续上升,到达最高点后投出篮球。已知某运动员的质量为m,双脚离开地面时的速度为v,从下蹲到最高点的过程中重心上升的高度为h,下列说法正确的是( )
A.从下蹲到离开地面,地面对运动员做的功为mgh
B.从下蹲到离开地面,地面对运动员做的功为零
C.从下蹲到离开地面,运动员的机械能增加了mgh+12mv2
D.从下蹲到最高点,运动员先超重后失重
答案:BD
AB.从地面跃起过程中,人在地面支持力方向上的位移为零,地面支持力对运动员所做的功为0,故A错误,B正确;
C.从下蹲到离开地面,运动员的动能增量12mv2,重力势能增加小于mgh,则运动员的机械能增加量小于mgh+12mv2,选项C错误;
D.从下蹲到最高点,运动员先加速向上,后减速向上,即超重后失重,选项D正确。
故选BD。
25、如图甲,一足够长的传送带与水平面的夹角θ=30°,皮带在电动机的带动下,速率始终不变。t=0时刻在传送带适当位置放上一具有初速度的小物块。取沿斜面向上为正方向,物块在传送带上运动的速度随时间的变化如图乙所示。已知小物块质量m=1kg,g取10m/s2,下列说法正确的是( )
A.传送带顺时针转动,速度大小为2m/s
B.传送带与小物块之间的动摩擦因数μ=235
C.0~t2时间因摩擦产生热量为27J
D.0~t2时间内电动机多消耗的电能为28.5J
答案:ABC
A.从v-t图像可知,小物块最终随传送带一起匀速运动,说明传送带的速度为2m/s,因为取沿斜面向上为正方向,所以传送带顺时针转动,故A正确;
B.小物块的加速度
a=1m/s2
对物块受力分析,可得
μmgcosθ-mgsinθ=ma
解得
μ=235
故B正确;
C.物块运动速度减为零后,反向加速经历时间
t=va=2s
由v-t图像可知
t2=3s
则物块向下运动过程中与传送带间的相对位移为
Δx1=x1+x1'=1×12m+1×2m=2.5m
物块向上运动过程中与传送带间的相对位移为
Δx2=x2-x2'=2×2m-2×22m=2m
所以传送带与物块的总相对位移为
Δx=Δx1+Δx2=4.5m
所以产生内能为
Q=μmgcosθ·Δs=27J
故C正确;
D.物块增加的重力势能
ΔEp=mgsinθ·(x2-x1) =7.5J
物块动能的增量
ΔEk=12mv2-12mv02=1.5J
则传送带多消耗的电能
W电=Q+ΔEp+ΔEk=36J
故D错误。
故选ABC。
填空题
26、滑板运动已成为青少年所喜爱的一种体育运动,如图所示,某同学正在进行滑板运动。图中AB段路面是水平的,BCD是一段半径R=20m的拱起的圆弧路面,圆弧的最高点C比AB段路面高出h=1.25m。已知人与滑板的总质量为M=60kg。该同学自A点由静止开始运动,在AB路段他单腿用力蹬地,到达B点前停止蹬地,然后冲上圆弧路段,结果到达C点时恰好对地面压力为零,不计滑板与各路段之间的摩擦力及经过B点时的能量损失,g取10m/s2,则该同学在AB段所做的功为___________。
答案:6750J
[1]该同学通过C点时有
Mg=MvC2R
从A点到C点设人做功为W,有
W-Mgh=12MvC2
解得
W=6750J
27、质量为m1和m2的两个小球,且m1>m2,某时刻它们的速率相等,则此时它们的动能之比是_________,此时它们的重力势能哪个大?________(选填“m1”、“m2”、“一样大”或“无法比较”)。
答案: m1m2 无法比较
[1]则它们的动能之比是
Ek1Ek2=12m1v212m2v2=m1m2
[2]重力势能的表达式为mgh ,因为不清楚h的关系,则它们的重力势能无法比较
28、如图甲所示,长木板A放在光滑的水平面上,质量为m=2kg的另一物体B(可视为质点)以水平速度v0=2m/s 滑上原来静止的长木板A的上表面,由于A、B间存在摩擦,之后A、B速度随时间的变化情况如图乙所示,已知当地的重力加速度g取10m/s2。则系统损失的机械能为ΔE=___________J,长木板A的最短长度为l=___________m,A、B间的动摩擦因数为μ=___________。
答案: 2 1 0.1
[1]由vt图像可知,最终A、B的共同速度
v=1m/s
且
aA=1m/s2
aB=1m/s2
又
f=MaA=maB
故长木板的质量
M=m=2kg
则系统损失的机械能
ΔE=12mv02-12(M+m)v2=2J
[2][3]由能量守恒定律有
fl=ΔE
解得
l=ΔEf=ΔEmaB=1m
又
f=μmg=maB
有
μ=0.1
29、放在水平地面上的一物块,受到方向不变的水平推力F的作用,F的大小与时间t的关系和物块速度v与时间t的关系如图1、2所示。取g=10m/s2,则物块的质量m为________kg;物块与地面之间的动摩擦因数μ为________;整个过程中水平推力F做功为________J;摩擦力做功为________J;
答案: 0.5 0.4 28 -24
[1]由v-t图象看出,物体在4s-6s做匀速直线运动,则
f=F3=2N
由速度图象可知,2-4s物体加速度为
a=ΔvΔt=4-04-2m/s2=2m/s2
F2=3N
由牛顿第二定律得
F2-f=ma
代入解得
m=0.5kg
[2]由
f=μN=μmg
可得
μ=0.4
[3]整个过程中水平推力F做功为
WF=F2⋅x2+F3⋅x3=(3×4+2×8)J=28J
[4]摩擦力做功为
Wf=-f(x2+x3)=-(2×4+2×8)J=-24J
30、如下图所示,一端固定在地面上的竖直轻质弹簧,当它处于自然长度时其上端位于A点。已知质量为m的小球(可视为质点)静止在此弹簧上端时,弹簧上端位于B点。现将此小球从距水平地面H高处由静止释放,小球落到轻质弹簧上将弹簧压缩,当小球速度大小第一次为零时,弹簧上端位于C点,已知C点距水平地面的高度为h。已知重力加速度为g,空气阻力可忽略不计,则当小球从高处落下,与弹簧接触向下运动由A点至B点的过程中,小球的速度在______ (选填“增大”或“减小”)、小球加速度在______ (选填“增大”或“减小”);在B点小球速度______ (选填“最大”或“最小”);当弹簧上端被压至C点时,弹簧的弹性势能大小为______。
答案: 增大 减小 最大 mgH-h
[1][2][3]小球静止在此弹簧上端时,弹簧上端位于B点,此时重力等于弹簧弹力。当小球接触弹簧后受力分析可知
mg-F=ma
重力大于弹力,小球做加速运动,速度在增大,弹簧弹力在增大,则加速度在减小,当运动到B点时,合力为0,加速度为0,速度达到最大值。
[4]小球和弹簧看做整体,根据机械能守恒定律可知
mgH-h=Ep
35
展开阅读全文