收藏 分销(赏)

函数教案-(2).doc

上传人:仙人****88 文档编号:6668220 上传时间:2024-12-20 格式:DOC 页数:3 大小:316KB 下载积分:10 金币
下载 相关 举报
函数教案-(2).doc_第1页
第1页 / 共3页
函数教案-(2).doc_第2页
第2页 / 共3页


点击查看更多>>
资源描述
几类不同增长的函数模型教案 刘军 【教学目标】 1. 结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义,理解它们的增长差异; 2. 借助信息技术,利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异; 3.体会函数在生活中的广泛应用,增强数学学习兴趣。 【教学重难点】 教学重点:将实际问题转化为数学问题,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。 教学难点:如何选择和利用不同函数模型增长差异性分析解决实际问题。 【教学过程】 (一)情景导入、展示目标。 阅读:澳大利亚兔子数“爆炸” 有一大群喝水、嬉戏的兔子,但是这群兔子曾使澳大利亚伤透了脑筋.1859年,有人从欧洲带进澳洲几只兔子,由于澳洲有茂盛的牧草,而且没有兔子的天敌,兔子数量不断增加,不到100年,兔子们占领了整个澳大利亚,数量达到75亿只.可爱的兔子变得可恶起来,75亿只兔子吃掉了相当于75亿只羊所吃的牧草,草原的载畜率大大降低,而牛羊是澳大利亚的主要牲口.这使澳大利亚头痛不已,他们采用各种方法消灭这些兔子,直至二十世纪五十年代,科学家采用载液瘤病毒杀死了百分之九十的野兔,澳大利亚人才算松了一口气. (二)典型例题 例1假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下: 方案一:每天回报40元; 方案二:第一天回报10元,以后每天比前一天多回报10元; 方案三:第一天回报0 .4元,以后每天的回报比前一天翻一番. 请问,你会选择哪种投资方案? (1)请你分析比较三种方案每天回报的大小情况 思考:各方案每天回报的变化情况可用什么函数模型来反映 (2)你会选择哪种投资方案? 思考:选择投资方案的依据是什么? 反思: ① 在本例中涉及哪些数量关系?如何用函数描述这些数量关系? ② 根据此例的数据,你对三种方案分别表现出的回报资金的增长差异有什么认识?借助计算器或计算机作出函数图象,并通过图象描述一下三种方案的特点. 解析:我们可以先建立三种投资方案所对应的模型,在通过比较他们的增长情况,为选择方案的依据。 解:设第天的回报为元,则方案一可以用进行描述,方案二可以用进行描述,方案三可以用进行描述,要对三个方案进行选择,就要对增长情况进行分析。 点评:在解决实际问题中,函数图像能够发挥很好的作用,因此,我们应该注意提高学生的读图能力。 例2某公司为了实现1000万元利润的目标,准备制定一个激励销售部门的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金(单位:万元)随销售利润(单位:万元)的增加而增加但奖金不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型: ;;. 问:其中哪个模型能符合公司的要求? 反思: ① 此例涉及了哪几类函数模型?本例实质如何? ② 根据问题中的数据,如何判定所给的奖励模型是否符合公司要求? 解析:根据实际,提示引导, 判定所给的奖励模型是否符合公司要求,就是依据这个模型进行奖励时,总奖金不超过5万元。 (三)探究 探索研究一次函数,幂函数,指数函数,对数函数在区间(0,,+∞)上的增长差异 (四)小结 1、解决应用题的一般程序: ① 审题:弄清题意,分清条件和结论,理顺数量关系; ② 建模:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型; ③ 解模:求解数学模型,得出数学结论; ④ 还原:将用数学知识和方法得出的结论,还原为实际问题的意义。 2、一次函数、幂函数、指数函数、对数函数的增长差异 通过图像和表格,容易看出,随着x的增大,各、函数值的变化及相应增量规律为: ⑴ 直线型均匀上升,增量恒定; ⑵ 指数型急剧上升,增量快速增大; ⑶ 对数型缓慢上升,增量逐渐减少; ⑷ 幂函数型虽上升较快,但随着x的不断增大上升趋势远不如指数型,几乎有些微不足道,其增量缓慢递增. 【板书设计】 一、几类函数模型 二、例题 例1 例2 【作业布置】课本98页1,2
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 小学其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服