资源描述
正方形的性质与判定
一、选择题(本大题共10小题)
1.如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,则∠BCE的度数是( )
A.22.5° B.25° C.23° D.20°
2.如一个四形的两对线互垂直平分且相等那么个四边形是( )
A.平行四边形 B.菱形 C.正方形 D.矩形
3.四边形ABCD的对角线AC、BD相交于点O,AD∥BC,AD=BC,使四边形ABCD为正方形,下列条件中:①AC=BD;②AB=AD; ③AB=CD;④AC⊥BD.需要满足( )
A.①② B.②③ C.②④ D.①②或①④
4.如图,正方形ABCD的对角线AC、BD相交于点O,OA=3,则此正方形的面积为( )
A.3 B.12 C.18 D.36
5.如图,在四边形ABCD中,对角线AC、BD相交于点O,若AO=C0=BO=DO,AC⊥BD,则四边形ABCD的形状是( )
A.平行四边形 B.矩形 C.菱形 D.正方形
第1题图 第4题图 第5题图 第7题图
6.已知在正方形ABCD中,对角线AC与BD相交于点O,OE∥AB交BC于点E,若AD=8cm,则OE的长为( )
A.3cm B.4cm C.6cm D.8cm
7.如图,正方形ABCD的边长为x,点E、F分别是对角线BD上的两点,过点E、F作AD、AB的平行线,则图中阴影部分的面积的和为( )
A.x2 B.x2 C.x2 D.x2
8.如图,正方形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH的面积是( )
A.30 B.34 C.36 D.40
9.如图,E是正方形ABCD对角线AC上一点,EF⊥AB,EG⊥BC,F、G是垂足,若正方形ABCD周长为a,则EF+EG等于( )
A. B. C.a D.2a
10.已知正方形ABCD的一条对角线长为2,则它的面积是( )
A.2 B.4 C.6
第8题图 第9题图 第11题图 第12题图
二、填空题(本大题共6小题)
11.如图,在正方形ABCD中,E为CD边上一点,以CE为对角线构造正方形CMEN,点N在正方形ABCD内部,连接AM,与CD边交于点F.若CF=3,DF=2,连接BN,则BN的长为 ______ .
12. 如图,已知:正方形EFGH的顶点E、F、G、H分别在正方形ABCD的边DA、AB、BC、CD上.若正方形ABCD的面积为16,AE=1,则正方形EFGH的面积为 ______ .
13. 如图,将正方形纸片按如图折叠,AM为折痕,点B落在对角线AC上的点E处,则∠CME= ______ .
14. 如图,BD是△ABC的角平分线,DE∥BC,交AB于点E,DF∥AB,交BC于点F,当△ABC满足条件 ______ 时,四边形BEDF是正方形.
15. 如图,正方形ABCD的边长为4,线段GH=AB,将GH的两端放在正方形的相邻的两边上同时滑动,如果G点从A点出发,沿图中所示方向按A→B→C→D→A滑动到A止,同时点H从点B出发,沿图中所示方向按B→C→D→A→B滑动到B止,在这个过程中,线段GH的中点P所经过的路线围成的图形的面积为 ______ .
16.如图,在正方形ABCD中,AB=,点P为边AB上一动点(不与A、B重合),过A、P在正方形内部作正方形APEF,交边AD于F点,连接DE、EC,当△CDE为等腰三角形时,AP= ______ .
三、解答题(本大题共8小题)
17.已知:P是正方形ABCD对角线AC上一点,PE⊥AB,PF⊥BC,E、F分别为垂足.
(1)求证:DP=EF.
(2)试判断DP与EF的位置关系并说明理由.
18.如图,在正方形ABCD中,E为对角线AC上一点,连接EB、ED.
(1)写出图中所有的全等三角形;
(2)延长BE交AD于点F,若∠DEB=140°,求∠AFE的度数.
19.已知,在正方形ABCD中,E是CB延长线上一点,且EB=BC,F是AB的中点,请你将F点与图中某一标明字母的点连接成线段,使连成的线段与AE相等.并证明这种相等关系.
20.如图,矩形ABCD的对角线相交于点O,PB∥AC,PC∥BD,PB、PC相交于点P.
(1)猜想四边形PCOB是什么四边形,并说明理由;
(2)当矩形ABCD满足什么条件时,四边形PCOB是正方形.
正方形的性质与判定练习参考答案
一、 选择题。
1.A
解:∵四边形ABCD是正方形,
∴∠CAB=∠BCA=45°;
△ACE中,AC=AE,则:
∠ACE=∠AEC=(180°-∠CAE)=67.5°;
∴∠BCE=∠ACE-∠ACB=22.5°.
故选A.
2. C
解:如果一个边形两对角线相垂直分且相等,那么这个边形正方形,
求证四边形ABC正方形,
∵ACBD,
∴平四边形CD为菱形,
已知:四边ABCD,A⊥,O=O,OBOD,AC=BD,
∴四边形ACD为方形.
边形ABCD为平行四形,
选C.
3.D
解:∵AD∥BC,AD=BC
∴四边形ABCD为平行四边形
∵AC=BD
∴平行四边形ABCD是矩形
若AB=AD
则四边形ABCD为正方形;
若AC⊥BD,则四边形ABCD是正方形.
故选D.
因为AD∥BC,AD=BC,所以四边形ABCD为平行四边形,添加①则可根据对角线相等的平行四边形是矩形,证明四边形是矩形,故可根据一组邻边相等的矩形是正方形来添加条件.
本题是考查正方形的判别方法,判别一个四边形为正方形主要根据正方形的概念,途经有两种:
①先说明它是矩形,再说明有一组邻边相等;
②先说明它是菱形,再说明它有一个角为直角.
4.C
解:∵正方形ABCD的对角线AC、BD相交于点O,OA=3,
∴AB=BC,OA=OC,
∴AB=,
∴正方形的面积=,
故选C.
5.D
解:四边形ABCD的形状是正方形,
理由如下:
∵AO=C0=BO=DO,
∴四边形ABCD是平行四边形,
∵AC⊥BD,
∴四边形ABCD是菱形,
∵AO=C0=BO=DO,
∴AC=DB,
∴四边形ABCD是正方形,
故选D.
6.B
解:∵四边形ABCD是正方形,
∴AD=AB=8cm,OA=OC,
∵OE∥AB,
∴OE是△ABC的中位线,
∴OE=AB=4cm,
故选B.
7. B
解:∵FP∥CD,
∴∠BPF=∠C=90°(同位角相等);
在△BFP和△BDC中,
,
∴△BFP∽△BDC,
∴=,
同理,得=,
又∵AD=CD,
∴NF=FP,
∵∠BNF=∠BPF=90°,BF=BF,
∴△BNF≌△BPF,
∴S△BNF=S△BPF,
同理,求得多边形NFEM与多边形PFEQ的面积相等,多边形MEDA与多边形QEDC的面积相等, ∴图中阴影部分的面积是正方形ABCD面积的一半,即.
故选B
8. B
解:∵四边形ABCD是正方形,
∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,
∵AE=BF=CG=DH,
∴AH=BE=CF=DG.
在△AEH、△BFE、△CGF和△DHG中,
,
∴△AEH≌△BFE≌△CGF≌△DHG(SAS),
∴EH=FE=GF=GH,∠AEH=∠BFE,
∴四边形EFGH是菱形,
∵∠BEF+∠BFE=90°,
∴∠BEF+∠AEH=90°,
∴∠HEF=90°,
∴四边形EFGH是正方形,
∵AB=BC=CD=DA=8,AE=BF=CG=DH=5,
∴EH=FE=GF=GH==,
∴四边形EFGH的面积是:×=34,
故选B.
9.A
解:∵E是正方形ABCD对角线AC上一点,
∴∠BAC=∠ACB=45°,
∵EF⊥AB,EG⊥BC,F、G是垂足,
∴EG=CG,EF=AF,
∵正方形ABCD周长为a,
∴BC=,
∴EF+EG等于,
故选A.
10. C.
解:在正方形中,对角线相等,所以正方形ABCD的对角线长均为2,
∵正方形又是菱形,
菱形的面积计算公式是S=ab(a、b是正方形对角线长度)
∴S=××=6, 故选 C.
二、填空题。
11.
解:如图,连接MN,延长AM、BC交于点G,MN与CD交于点H,作NK⊥BC于K.
∵四边形ABCD是正方形,DF=2.CF=3,
∴AD∥BG,AD=BC=CD=5,
∴==,
∴CG=,
∵四边形ENCM是正方形,
∴NH=HM=CH=EH,MN⊥EC,设CH=x,
∴MH∥CG,
∴=,
∴=,
∴x=,
在RT△BNK中,∵∠BKN=90°,NK=CH=,BK=BC-CK=,
∴BN===.
故答案为.
12.解:∵四边形ABCD、EFGH均为正方形,
∴∠A=∠B=90°,∠EFG=90°,EF=FG.
∵∠AFE+∠BFG=90°,∠BFG+∠BGF=90°,
∴∠AFE=∠BGF.
在△AFE和△BGF中,,
∴△AFE≌△BGF(AAS),
∴BF=AE=1.
∵正方形ABCD的面积为16,
∴AB=4,AF=AB-BF=3.
同理可证出△AFE≌△BGF≌△CHG≌△DEH.
∴S正方形EFGH=S正方形ABCD-4S△AFE=16-4××1×3=10.
故答案为:10.
13.解:∵四边形ABCD是正方形,
∴∠B=90°,∠ACB=45°,
由折叠的性质得:∠AEM=∠B=90°,
∴∠CEM=90°,
∴∠CME=90°-45°=45°;
故答案为:45°.
14. 解:当△ABC满足条件∠ABC=90°,四边形DEBF是正方形.
理由:∵DE∥BC,DF∥AB,
∴四边形DEBF是平行四边形
∵BD是∠ABC的平分线,
∴∠EBD=∠FBD,
又∵DE∥BC,
∴∠FBD=∠EDB,
则∠EBD=∠EDB,
∴BE=DE.
故平行四边形DEBF是菱形,
当∠ABC=90°时,
菱形DEBF是正方形.
故答案为:∠ABC=90°.
15.解:根据题意得点M到正方形各顶点的距离都为2,点M所走的运动轨迹为以正方形各顶点为圆心,以2为半径的四个扇形,
∴点P所经过的路线围成的图形的面积为正方形ABCD的面积减去4个扇形的面积.
∵正方形ABCD的面积为4×4=16,4个扇形的面积为4×=4π,
∴点P所经过的路线围成的图形的面积为16-4π.
故答案为16-4π.
16. 解:连接AE,
∵四边形ABCD、APEF是正方形,
∴A、E、C共线,
①当CD=CE=时,AE=AC-EC=2-,
∴AP=AE=-1②当ED=EC时,∠DEC=90°,∠EDC=∠ECD=45°,EC=CD=1,
∴AE=AC-EC=1,
∴AP=AE=.
∴当△CDE为等腰三角形时,AP=-1或.
故答案为或.
三、 解答题。
17.证明:(1)如图1所示:连结PB.
∵四边形ABCD是正方形,
∴BC=DC,∠BCP=∠DCP=45°.
∵在△CBP和△CDP中,,
∴△CBP≌△CDP.
∴DP=BP.
∵PE⊥AB,PF⊥BC,∠B=90°
∴四边形BFPE是矩形.
∴BP=EF.
∴DP=EF.
(2)DP⊥EF.
理由:如图2所示:延长DP交EF于G,延长EP交CD于H,连接PB.
∵△CBP≌△CDP,
∴∠CDP=∠CBP.
∵四边形BFPE是矩形,
∴∠CBP=∠FEP.
∴∠CDP=∠FEP.
又∵∠EPG=∠DPH.
∴∠EGP=∠DHP.
∵PE⊥AB,AB∥DC
∴PH⊥DC.即∠DHP=90°.
∴∠EGP=∠DHP=90°
∴PG⊥EF,即DP⊥EF.
18.解:(1)根据正方形的对称性,正方形ABCD关于直线AC成轴对称,
所以,全等的三角形有:△ADC≌△ABC,△ADE≌△ABE,△DCE≌△BCE;
(2)∵∠DEB=140°,
∴∠BEC=∠DEB=×140°=70°,
又∵正方形对角线AC平分∠BCD,
∴∠ACB=45°,
在△BCE中,∠CBE=180°-∠BEC-∠ACB=180°-70°-45°=65°,
∵AD∥BC,
∴∠AFE=∠CBE=65°.
19.解:如图,连接DF、CF均可得出与AE相等.
证明:∵ABCD为正方形,
∴AD=AB,∠DAF=∠ABE,
∵F为中点,BE=BC,
∴AF=BE,
∴△ADF≌△BAF,
∴DF=AE.
同理可得CF=AE.
20.解:(1)四边形PCOB是菱形;理由如下:
∵PB∥AC,PC∥BD,
∴四边形PCOB为平行四边形,
∵四边形ABCD为矩形,
∴OBOD,OA=OC,AC=BD,
∴OB=OC,
∴四边形PCOB为菱形(有一组邻边相等的平行四边形为菱形);
(2)当AC⊥BD时,四边形PCOB是正方形;理由如下:
∵四边形PCOB为菱形,AC⊥BD,
∴四边形PCOB为正方形(有一个角为90°的菱形为正方形).
10
展开阅读全文