1、2022-2023学年九上数学期末模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1若四边形ABCD是O的内接四边形,且ABC=138,则D的度数是A10B30C80D1202若正六边形的边长为6,则其外接圆半径为( )A3B3C3D63若数据,的众数为,方差为,则数据,的众数、方差分别是( )A,B,C,D,4若
2、锐角满足cos且tan,则的范围是()A3045B4560C6090D30605如图,抛物线与轴交于、两点,是以点(0,3)为圆心,2为半径的圆上的动点,是线段的中点,连结.则线段的最大值是( )ABCD6在做针尖落地的实验中,正确的是( )A甲做了4 000次,得出针尖触地的机会约为46%,于是他断定在做第4 001次时,针尖肯定不会触地B乙认为一次一次做,速度太慢,他拿来了大把材料、形状及大小都完全一样的图钉,随意朝上轻轻抛出,然后统计针尖触地的次数,这样大大提高了速度C老师安排每位同学回家做实验,图钉自由选取D老师安排同学回家做实验,图钉统一发(完全一样的图钉)同学交来的结果,老师挑选他
3、满意的进行统计,他不满意的就不要7如图2,在平面直角坐标系中,点的坐标为(1,4)、(5,4)、(1、),则外接圆的圆心坐标是A(2,3)B(3,2)C(1,3)D(3,1)8已知圆锥的底面半径为2cm,母线长为5cm,则圆锥的侧面积是( )A20cm2B20cm2C10cm2D5cm29如图,是的直径,点,在上,若,则的度数为( )ABCD10一次函数与二次函数在同一平面直角坐标系中的图像可能是( )ABCD二、填空题(每小题3分,共24分)11反比例函数图像经过点(2,3),则它的函数表达式是 12若一个三角形的两边长分别是4和6,第三边的长是方程x217x+600的一个根,则该三角形的第
4、三边长是_13将矩形纸片ABCD按如下步骤进行操作:(1)如图1,先将纸片对折,使BC和AD重合,得到折痕EF;(2)如图2,再将纸片分别沿EC,BD所在直线翻折,折痕EC和BD相交于点O那么点O到边AB的距离与点O到边CD的距离的比值是_14如图,在ABC中,AB3,AC4,BC6,D是BC上一点,CD2,过点D的直线l将ABC分成两部分,使其所分成的三角形与ABC相似,若直线l与ABC另一边的交点为点P,则DP_15在比例尺为1:1000000的地图上,量得甲、乙两地的距离是2.6cm,则甲、乙两地的实际距离为_千米.16若一个正六边形的周长为24,则该正六边形的面积为 17已知是关于的一
5、元二次方程的两个实数根,则_.18因式分解:_;三、解答题(共66分)19(10分)在推进城乡生活垃圾分类的行动中,某校数学兴趣小组为了了解居民掌握垃圾分类知识的情况,对两小区各600名居民进行测试,从中各随机抽取50名居民成绩进行整理得到部分信息:(信息一)小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值);(信息二)上图中,从左往右第四组成绩如下:75777779797980808182828383848484(信息三)两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):小区平均数中位数众数优秀率方差75.1_7
6、940%27775.1777645%211根据以上信息,回答下列问题:(1)求小区50名居民成绩的中位数;(2)请估计小区600名居民成绩能超过平均数的人数;(3)请尽量从多个角度,选择合适的统计量分析两小区参加测试的居民掌握垃圾分类知识的情况20(6分)如图,已知A(-1,0),一次函数的图像交坐标轴于点B、C,二次函数的图像经过点A、C、B点Q是二次函数图像上一动点。(1)当时,求点Q的坐标;(2)过点Q作直线/BC,当直线与二次函数的图像有且只有一个公共点时,求出此时直线对应的一次函数的表达式并求出此时直线与直线BC之间的距离。21(6分)如图,在中,点为上一点且与不重合,交于(1)求证
7、:;(2)设,求关于的函数表达式;(3)当时,直接写出_22(8分) “江畔”礼品店在十一月份从厂家购进甲、乙两种不同礼品购进甲种礼品共花费1500元,购进乙种礼品共花费1050元,购进甲种礼品数量是购进乙种礼品数量的2倍,且购进一件乙种礼品比购进一件甲种礼品多花20元(1)求购进一件甲种礼品、一件乙种礼品各需多少元;(2)元旦前夕,礼品店决定再次购进甲、乙两种礼品共50个恰逢该厂家对两种礼品的价格进行调整,一件甲种礼品价格比第一次购进时提高了30%,件乙种礼品价格比第次购进时降低了10元,如果此次购进甲、乙两种礼品的总费用不超过3100元,那么这家礼品店最多可购进多少件甲种礼品?23(8分)
8、如图,已知,相交于点为上一点,且.(1)求证:;(2)求证:.24(8分)如图,AB是O的直径,BC为O的切线,D为O上的一点,CD=CB,延长CD交BA的延长线于点E,(1)求证:CD为O的切线;(2)若BD的弦心距OF=1,ABD=30,求图中阴影部分的面积(结果保留)25(10分)中国古代有着辉煌的数学成就,周髀算经,九章算术,海岛算经,孙子算经等是我国古代数学的重要文献(1)小聪想从这4部数学名著中随机选择1部阅读,则他选中九章算术的概率为 ;(2)某中学拟从这4部数学名著中选择2部作为“数学文化”校本课程学习内容,求恰好选中九章算术和孙子算经的概率26(10分)如图,AB是圆O的直径
9、,O为圆心,AD、BD是半圆的弦,且PDA=PBD延长PD交圆的切线BE于点E(1)判断直线PD是否为O的切线,并说明理由;(2)如果BED=60,PD=,求PA的长;(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形参考答案一、选择题(每小题3分,共30分)1、D【解析】试题分析:设A=x,则B=3x,C=8x,因为四边形ABCD为圆内接四边形,所以A+C=180,即:x+8x=180,x=20,则A=20,B=60,C=160,所以D=120,故选D考点: 圆内接四边形的性质2、D【分析】连接正六边形的中心和各顶点,得到六个全等的正三角形
10、,于是可知正六边形的边长等于正三角形的边长,为正六边形的外接圆半径【详解】如图为正六边形的外接圆,ABCDEF是正六边形,AOF=10, OA=OF, AOF是等边三角形,OA=AF=1.所以正六边形的外接圆半径等于边长,即其外接圆半径为1故选D【点睛】本题考查了正六边形的外接圆的知识,解题的关键是画出图形,找出线段之间的关系.3、C【分析】根据众数定义和方差的公式来判断即可,数据,原来数据相比都增加2,,则众数相应的加2,平均数都加2,则方差不变【详解】解:数据,的众数为,方差为,数据,的众数是a+2,这组数据的方差是b故选:C【点睛】本题考查了众数和方差,当一组数据都增加时,众数也增加,而
11、方差不变4、B【详解】是锐角,cos0,cos,0cos,又cos90=0,cos45=,450,tan,0tan,又tan0=0,tan60=,060;故4560.故选B.【点睛】本题主要考查了余弦函数、正切函数的增减性与特殊角的余弦函数、正切函数值,熟记特殊角的三角函数值和了解锐角三角函数的增减性是解题的关键5、C【分析】根据抛物线解析式可求得点A(-4,0),B(4,0),故O点为AB的中点,又Q是AP上的中点可知OQ=BP,故OQ最大即为BP最大,即连接BC并延长BC交圆于点P时BP最大,进而即可求得OQ的最大值.【详解】抛物线与轴交于、两点A(-4,0),B(4,0),即OA=4.在
12、直角三角形COB中BC=Q是AP上的中点,O是AB的中点OQ为ABP中位线,即OQ=BP又P在圆C上,且半径为2,当B、C、P共线时BP最大,即OQ最大此时BP=BC+CP=7OQ=BP=.【点睛】本题考查了勾股定理求长度,二次函数解析式求点的坐标及线段长度,中位线,与圆相离的点到圆上最长的距离,解本题的关键是将求OQ最大转化为求BP最长时的情况.6、B【解析】试题分析:根据模拟实验带有一定的偶然性,相应的条件性得到正确选项即可A、在做第4001次时,针尖可能触地,也可能不触地,故错误,不符合题意;B、符合模拟实验的条件,正确,符合题意;C、应选择相同的图钉,在类似的条件下实验,故错误,不符合
13、题意;D、所有的实验结果都是有可能发生,也有可能不发生的,故错误,不符合题意;故选B考点:本题考查的是模拟实验的条件点评:解答本题的关键是注意实验器具和实验环境应相同,实验的结果带有一定的偶然性7、D【解析】根据垂径定理的推论“弦的垂直平分线必过圆心”,作两条弦的垂直平分线,交点即为圆心解答:解:根据垂径定理的推论,则作弦AB、AC的垂直平分线,交点O1即为圆心,且坐标是(3,1)故选D8、C【解析】圆锥的侧面积=底面周长母线长2,把相应数值代入,圆锥的侧面积=2252=10故答案为C9、C【分析】先根据圆周角定理求出ACD的度数,再由直角三角形的性质可得出结论【详解】,ABD=ACD =40
14、,AB是O的直径,ACB=90BCD=ACB -ACD =90-40=50故选:C【点睛】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键10、D【分析】本题可先由一次函数y=ax+c图象得到字母系数的正负,再与二次函数y=ax2+bx+c的图象相比较看是否一致【详解】A、一次函数y=ax+c与y轴交点应为(0,c),二次函数y=ax2+bx+c与y轴交点也应为(0,c),图象不符合,故本选项错误;B、由抛物线可知,a0,由直线可知,a0,a的取值矛盾,故本选项错误;C、由抛物线可知,a0,由直线可知,a0,a的取值矛盾,故本选项错误;D、由抛物线可知,a0,由直线可知,a0
15、,且抛物线与直线与y轴的交点相同,故本选项正确故选D【点睛】本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法二、填空题(每小题3分,共24分)11、【解析】试题分析:设反比例函数的解析式是则,得,则这个函数的表达式是故答案为考点:1待定系数法求反比例函数解析式;2待定系数法12、1【分析】根据三角形两边之和大于第三边,两边之差小于第三边,结合一元二次方程相关知识进行解题即可.【详解】解:x217x+600,(x1)(x12)0,解得:x11,x212,三角形的两边长分别是4和6,当x12时,6+412,不能组成三角形这个三角形的第三边长是1故答案为:1【点睛】本题考查了
16、三角形的三边关系和一元二次方程的求解,熟悉三角形三边关系是解题关键.13、【分析】根据折叠的性质得到BEAB,根据矩形的性质得到ABCD,BOEDOC,再根据相似三角形的性质即可求解【详解】解:由折叠的性质得到BEAB,四边形ABCD是矩形,ABCD,BOEDOC,BOE与DOC的相似比是,点O到边AB的距离与点O到边CD的距离的比值是故答案为:【点睛】本题考查了翻折变换(折叠问题)、矩形的性质、相似三角形的判定与性质等知识,综合性强,还考查了操作、推理、探究等能力,是一道好题14、1, ,【分析】分别利用当DPAB时,当DPAC时,当CDP=A时,当BPD=BAC时求出相似三角形,进而得出结
17、果【详解】BC6,CD=2, BD=4,如图,当DPAB时,PDCABC,,DP=1;如图,当DPAC时,PBDABC,DP=;如图,当CDP=A时,DPCABC,,DP=;如图,当BPD=BAC时,过点D的直线l与另一边的交点在其延长线上,不合题意。综上所述,满足条件的DP的值为1, ,.【点睛】本题考查了相似变换,利用分类讨论得出相似三角形是解题的关键,注意不要漏解15、1【解析】根据比例尺图上距离:实际距离根据比例尺关系即可直接得出实际的距离【详解】根据比例尺图上距离:实际距离,得:A,B两地的实际距离为2.61000000100000(cm)1(千米)故答案为1【点睛】本题考查了线段的
18、比能够根据比例尺正确进行计算,注意单位的转换16、【解析】根据题意画出图形,如图,连接OB,OC,过O作OMBC于M,BOC=360=60OB=OC,OBC是等边三角形OBC=60正六边形ABCDEF的周长为21,BC=216=1OB=BC=1,BM=OBsinOBC =117、-3【分析】欲求的值,根据一元二次方程根与系数的关系,求得两根的和与积,代入数值计算即可【详解】解:根据题意x1+x2=2,x1x2=-4,=-3.故答案为:-3.【点睛】本题考查了一元二次方程根与系数的关系,将根与系数的关系与代数式变形相结合解题是经常使用的一种解题方法18、(a-b)(a-b+1)【解析】原式变形后
19、,提取公因式即可得到结果【详解】解:原式=(a-b)2+(a-b)=(a-b)(a-b+1),故答案为:(a-b)(a-b+1)【点睛】此题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键三、解答题(共66分)19、(1)76;(2)300人;(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数【分析】(1)因为有50名居民,中位数应为第25名和第26名成绩的平均值,所以中位数落在第四组,再根据信息二中的表格数据可得出结果;(2)先求出A小区超过平均数的人
20、数,即(16-1)+10=25(人),再根据小区600名居民成绩能超过平均数的人数=600,即可得出结果;(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数【详解】解:(1)因为有50名居民,中位数应为第25名和第26名成绩的平均值.而前三组的总人数为:4+8+12=24(人),所以中位数落在第四组,第25名的成绩为75分,第26名的成绩为77分,所以中位数为76,故答案为:76; (2)根据题意得,600=300(人),答:A小区600名居民成绩能超过平均数的人数300
21、人;(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数 (答案不唯一,合理即可;)【点睛】本题考查的是条形统计图读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据20、(1)Q(0,2)或(3,2)或Q(,-2)或Q(,-2);(2)一次函数,此时直线与直线BC之间的距离为【分析】(1)根据可求得Q点的纵坐标,将Q点的纵坐标代入求得的二次函数解析式中求出Q点的横坐标,即可求得Q点的坐标;(2)根据两直线平行可得直线l的一次项系
22、数,因为直线与抛物线只有一个交点,所以联立它们所形成的方程组有两个相同的解可求得直线l的常数项,即可得到它的解析式.利用等面积法可求得原点距离两直线的距离,距离差即为直线与直线BC之间的距离.【详解】解:(1)对于一次函数,当x=0时,y=2,所以C(0,2),当y=0时,x=4,所以B(4,0). 则,将A、B带入二次函数解析式得,解得,二次函数解析式为:,当y=2时,解得,所以,当y=-2时,解得,所以,故Q(0,2)或(3,2)或Q(,-2)或Q(,-2).(2)根据题意设一次函数, 直线与二次函数的图像有且只有一个公共点只有一个解,整理得,解得b=4, 一次函数如下图,直线l与坐标轴分
23、别相交于D,E,过O作直线BC的垂线与BC和DE相交于F和G,对于一次函数,当x=0时,y=4,故D(0,4),当y=0时,x=8,故E(8,0).,即,解得, ,即,解得,.此时直线与直线BC之间的距离为.【点睛】本题考查一次函数与二次函数的综合应用.(1)中能利用求得Q点的纵坐标是解决此问的关键;(2)中需理解两个一次函数平行k值相等;一次函数与二次函数交点的个数取决于联立它们所形成的一元二次方程的解得个数;掌握等面积法在实际问题中的应用.21、(1)详见解析;(2);(3)1【分析】(1)先根据题意得出BC,再根据等量代换得出ADBDEC即可得证;(2)根据相似三角形的性质得出,将相应值
24、代入化简即可得出答案;(3)根据相似三角形的性质得出,再根据已知即可证明AE=EC从而得出答案【详解】解:(1)RtABC中,BAC90,ABAC2,BC45,BCADE45,ADBCDECDEDEC135ADBDEC,ABDDCE(2)ABDDCE,BDx,AEy,则DC,代入上式得:,即(3),在中,【点睛】本题考查了相似三角形的判定及性质定理,熟练掌握定理是解题的关键22、(1)购进一件甲种礼品需要50元,一件乙种礼品需70元;(2)最多可购进20件甲种礼品【分析】(1)设购进一件甲种礼品需x元,则一件乙种礼品需(x+20)元根据题意得:,解方程可得;(2)设购进甲m件,则购进乙件根据题
25、意得:,解不等式可得.【详解】解:(1)设购进一件甲种礼品需x元,则一件乙种礼品需(x+20)元根据题意得:解得:x=50经检验,x=50是原方程的解,且符合题意=70元答:购进一件甲种礼品需要50元,一件乙种礼品需70元(2)设购进甲m件,则购进乙件根据题意得:解得:答:最多可购进20件甲种礼品【点睛】考核知识点:分式方程应用.根据销售价格关系列出方程和不等式是关键.23、(1)见解析;(2)见解析【分析】(1)根据平行线的性质得B=C,然后由两个角对应相等,即可证明两个三角形相似;(2)由(1)AFEBFA,得到,即可得到结论成立.【详解】解:证明:(1)ABCD(已知),B=C(两直线平
26、行内错角相等),又EAF=C(已知),B=EAF(等量代换),又AFE=BFA(公共角),AFEBFA(两对对应角相等的两三角形相似)(2)由(1)得到AFEBFA, , 即AF2=EFFB【点睛】本题考查了相似三角形的判定和性质,平行线的性质,解题的关键是熟练掌握相似三角形的判定和性质进行解题.24、(1)见解析;(2)【分析】(1)连接OD,由BC是O的切线,可得ABC=90,由CD=CB,OB=OD,易证得ODC=ABC=90,即可证得CD为O的切线(2)在RtOBF中,ABD=30,OF=1,可求得BD的长,BOD的度数,又由,即可求得答案【详解】解:(1)证明:连接OD,BC是O的切
27、线,ABC=90CD=CB,CBD=CDBOB=OD,OBD=ODBODC=ABC=90,即ODCD点D在O上,CD为O的切线(2)在RtOBF中,ABD=30,OF=1,BOF=60,OB=2,BF=OFBD,BD=2BF=2,BOD=2BOF=120,25、(1);(2)【分析】(1)根据小聪选择的数学名著有四种可能,而他选中九章算术只有一种情况,再根据概率公式解答即可;(2)此题需要两步完成,所以可采用树状图法或者采用列表法求解【详解】解:(1)小聪想从这4部数学名著中随机选择1部阅读,则他选中九章算术的概率为故答案为;(2)将四部名著周髀算经,九章算术,海岛算经,孙子算经分别记为A,B
28、,C,D,记恰好选中九章算术和孙子算经为事件M方法一:用列表法列举出从4部名著中选择2部所能产生的全部结果:第1部第2部ABCDABACADABABCBDBCACBCDCDADBDCD由表中可以看出,所有可能的结果有12种,并且这12种结果出现的可能性相等,所有可能的结果中,满足事件M的结果有2种,即DB,BD,P(M)方法二:根据题意可以画出如下的树状图:由树状图可以看出,所有可能的结果有12种,并且这12种结果出现的可能性相等,所有可能的结果中,满足事件M的结果有2种,即BD,DB,P(M)故答案为:.【点睛】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,
29、适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比26、(1)证明见解析;(2)1;(3)证明见解析.【分析】(1)连接OD,由AB是圆O的直径可得ADB=90,进而求得ADO+PDA=90,即可得出直线PD为O的切线;(2)根据BE是O的切线,则EBA=90,即可求得P=30,再由PD为O的切线,得PDO=90,根据三角函数的定义求得OD,由勾股定理得OP,即可得出PA;(3)根据题意可证得ADF=PDA=PBD=ABF,由AB是圆O的直径,得ADB=90,设PBD=x,则可表示出DAF=PAD=
30、90+x,DBF=2x,由圆内接四边形的性质得出x的值,可得出BDE是等边三角形进而证出四边形DFBE为菱形【详解】解:(1)直线PD为O的切线,理由如下:如图1,连接OD,AB是圆O的直径,ADB=90,ADO+BDO=90,又DO=BO,BDO=PBD,PDA=PBD,BDO=PDA,ADO+PDA=90,即PDOD,点D在O上,直线PD为O的切线;(2)BE是O的切线,EBA=90,BED=60,P=30,PD为O的切线,PDO=90,在RtPDO中,P=30,PD=,解得OD=1,=2,PA=POAO=21=1;(3)如图2,依题意得:ADF=PDA,PAD=DAF,PDA=PBDADF=ABF,ADF=PDA=PBD=ABF,AB是圆O的直径,ADB=90,设PBD=x,则DAF=PAD=90+x,DBF=2x,四边形AFBD内接于O,DAF+DBF=180,即90+x+2x=180,解得x=30,ADF=PDA=PBD=ABF=30,BE、ED是O的切线,DE=BE,EBA=90,DBE=60,BDE是等边三角形,BD=DE=BE,又FDB=ADBADF=9030=60DBF=2x=60,BDF是等边三角形,BD=DF=BF,DE=BE=DF=BF,四边形DFBE为菱形.【点睛】本题是一道综合性的题目,考查了切线的判定和性质,圆周角定理和菱形的性质,是中档题,难度较大