资源描述
Text1:
1、实验地点:美国
2、设备仪器
材料:粘结剂、膨润土、水、石英砂、强塑剂。
设备:膨润土和水在高剪切混和器中预混合,混合浆液在胶体混合器中完成,薄浆混合器、活塞泵、
3、 实验方法
热传导的薄浆由粘结剂、水、一种特殊等级的石英砂、强塑剂和少量的膨润土组成。我们的目标是使得水与胶结材料的比值(w/c)尽可能的小,以提高热工性能,减小渗透性,提高耐用性。
导热系数的测量采用Shotherm QTM-D2热传导计量仪测量。这种计量仪使用热线测量的方法来计算导热系数,式1是这种测量方法的基本表达式。热线测量是一种瞬态测量方法,因此克服了湿流和随后的湿浆导热系数的降低,其经常在稳态测量方法中出现。
底板表面的加热器和热电偶所组成的导热系数已知的探测器放置在待测材料的表面,衡流通过了加热器的金属丝,热效应的电流同时被自动记录了下来,导热系数可以由式2得到。每个样本有3个测量值,因此每个方程的总的测量值的数量是9个。
4、实验结果分析
由上述结果可以看出:
(1)材料111在潮湿的环境中有较高的导热系数。
(2)加工条件同样影响导热系数。密封加工条件下的导热系数比较高。
可以预见:用于回填钻孔的泥浆的导热系数取决于加工条件和湿度含量。
其他因素的测试与分析,如材料比重、渗透性、线性收缩、粘合强度、冻融持久性、机械性能、超声脉冲速度、热阻,见文献【1】
1 M.L. AlIan ,A.J. Philippacopoulos. THERMALLY CONDUCTIVE CEMENTITIOUS GROUTS FOR GEOTHERMAL HEAT PUMPSJ. PROGRESS REPORT FY 98
Text2: 超强吸水树脂与原土混合作为地源热泵回填材料的实验研究
1、使用地点:适合于在干旱、岩土体非饱和及地下水位较低的地区应用
2、实验原理及设备
常温下,回填物质组成确定以后,对回填材料的导热系数起决定作用的是回填材料的密度ρ和含水率ω,函数关系可表示为:λ=f(ρ,ω), 以回填材料含水率的大小对换热器换热效果起着很大的作用。
3、实验结果
分别以U型管和螺旋盘管单独作为地下换热器,各自连续运行7天,每天运行10h。
4、结论
超强吸水树脂与原土混合作为回填材料,在注人少量水的情况下,能够很好地改善岩土体的非饱和性,增大岩土体的导热系数,提高岩土体的热恢复性能,明显增大单位管长的吸热量,适合于干旱、岩土体非饱和以及地下水位比较低的地区,特别有利于螺旋盘管的应用,可以极大地降低地源热泵系统初投资,值得推广和应用。
2 王向岩,马伟斌,黄远峰,龚宇烈,孙始财. 超强吸水树脂与原土混合作为地源热泵回填材料的实验研究J. 暖通空调,2006, 36(6):108~110.
Text3:
1、 地点:天津
2、 两种埋管换热器
U型桩埋管与U 型井埋管在相同进水温度和流量的工况下连续运行。放热时,U 型桩埋管比U型井埋管的单位管长换热量提高8% ,取热时,提高约32%。U 型桩埋管的单位管长换热量和取热稳定性方面要明显优于U型井埋管。实验还说明,换热器连续运行初期,单位管长换热量较大,但热输出下降较快,说明埋管换热器采用间歇运行将能够获得更好的换热效果。
3、不同回填材料
4、结论:
1)在天津市某生态小区建立了闭环大地耦合式地源热泵埋管换热器测试系统,对采用不同回填材料的u型桩埋管和u型井埋管换热性能分别进行取热和放热工况的实验研究,得到了单位管长换热量等结果,可以为GCHP系统的工程设计和应用提供参考依据。
2)相同实验工况下,得到了U 型桩埋管的换热效果和换热稳定性要优于U 型井埋管,说明不同回填材料对埋管换热器的换热效果有一定影响。
3)研究U型桩埋管短期运行对周围土壤温度分布的影响,得到取热工况和放热工况下,U 型桩埋管换热器的热作用半径分别为1~1.5m 和1.5~ 2m
3 李新国,汪洪军,赵军,李丽新,朱强,吕强. 不同回填材料对U型垂直埋管换热性能的影响J. 太阳能学报,2003, 24(6):810~813.
Text4:
Ground-coupled heat pump (GCHP) systems use the ground as low-grade solar energy storage medium. Their high potential for energy conservation has long been recognized. However, the effect of ground coil backfilling material has never been seriously analyzed for GCHP applications. For the northern part of the US where winter heating load dominates, variation in backfilling material can probably be ignored, because the soil adjacent to the ground coil (and any void) will be saturated for winter operation. It is not economically viable to add thermal backfill for relatively mild and short summer operation. For those areas where the summer cooling load dominates, the choice of a backfilling material becomes very important for the following reasons: (1) to minimize the contact resistance between coil and soil and (2) to maintain high thermal conductivity in the backfilling region even under very dry ground conditions. Both reasons involve moisture migration during ground coil summer heat rejection. This paper presents a mathematical model to describe the operation of horizontal ground coils, which includes the effect of backfilling material. The model was validated with field experimental data, with overall error between calculated and measured total energy exchange between coil and ground of only 4.4%, with the former on the conservative side. Three different backfilling materials were analyzed: clay, sand, and a fluidized mixture used for underground cable backfilling. The calculated results indicated that backfilling material made a big difference in coil performance. The fluidized mixture dissipates 47% more heat than the clay and 23% more than the sand. This model can be used to assess the effect of different kinds of backfilling materials. Improvements in coil performance versus cost of backfilling material can now be more realistically analyzed. (ERA citation 12:039051)
4 Mei, V. C..Effect of Backfilling Material on Ground Coil PerformanceJ. EI
展开阅读全文