1、不等式性质三步曲一、 复习解方程4x+1=17,并说出每一步的依据等式性质1,2解方程的实质是什么?利用等式性质1,2对方程进行变形,转化为x=a(其中,左边只有一项未知项,且x的系数为1)板书:4x+1=17 x=a(其中,左边只有未知项,且系数为1,右边只有常数项) 4x=16 (依据:等式性质1,两边加,减同一个数或式子,等式仍然相等) X=4 (依据:等式性质2,两边乘或除以同一个不为零的数,等式仍然相等)二、 情境创设情境一:我的工资4000元,李老师工资5000元,我这心里不平衡呀,感叹上帝真不公平情境二:今年都涨了1000元,心里小小高兴了了下,细细想来,公平了吗?情境三:更没想
2、到,爱心捐赠,每人都要捐300元,这下我平衡了吧?1、用不等式解释以上说法是否正确400050004000+1000_5000+10005000b,则a+4_b+4,a-3_b-3运用:x-515如果在两边同时加上5,会得什么结果?师:这与解方程4x+1=17的过程有何相似之处?点拨:解方程是利用等式的性质对方程进行变形,把方程转化为x=a;如今我们也要利用不等式的性质可以对不等式进行变形,使不等式转化为x,a或x15 两边加5,得 x15+5 x20师:刚刚探讨了在不等式两边同加同减,若在两边同乘或两除以一个数不等号的方向会怎样呢?下面我来探讨一下(二) 探究:用“”或“”填空:1、62,则
3、65_25,65_252、 -62,则-65_25,-62_22师:你有什么猜想? 如果ab, 那么ac_bc,或ac_bc如果改变条件,我们的猜想还成立吗?3、 62,则6(-5)_2(-5),6-5_2-54、 -6b当c0时,ac_bc,ac_bc 当c0时,ac_bc,ac_bc不等式性质2:不等式两边乘(或除以)同一个正数,不等号的方向不变 不等式性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变师:那么,当ab时呢?如果a0时,ac_bc,ac_bc 当ca.x32 (2)-3x-12 (4)变式:4x-360;4x-362x(四) 练练手:1、试一试:ab,那么3a_3b ;a6_b6ab,判断下面哪个选项正确A.-3a-3b, B.-a2-b2 C.3a3b D. -a2-b22、完成课本117页练习题(三)运用:见学习指要55页例2四、 小结:1、 不等式性质的3步曲2、 性质的运用五、 作业:课本P120第5题六、 教后记本课采用了同课异构,两个班都上了同样的内容,作了微小的改动,但总的来说,内容稍显多,教师讲得有点多,把本课分两课时讲是否更好?一课时讲性质及由性质进行的变形,另一课时专讲利用性质对不等式进行变形从而解不等式。下次作这样的尝试。不足:3